Cargando…
Sparsely Connected Autoencoders: A Multi-Purpose Tool for Single Cell omics Analysis
Background: Biological processes are based on complex networks of cells and molecules. Single cell multi-omics is a new tool aiming to provide new incites in the complex network of events controlling the functionality of the cell. Methods: Since single cell technologies provide many sample measureme...
Autores principales: | Alessandri, Luca, Ratto, Maria Luisa, Contaldo, Sandro Gepiro, Beccuti, Marco, Cordero, Francesca, Arigoni, Maddalena, Calogero, Raffaele A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657975/ https://www.ncbi.nlm.nih.gov/pubmed/34884559 http://dx.doi.org/10.3390/ijms222312755 |
Ejemplares similares
-
Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining
por: Alessandri, Luca, et al.
Publicado: (2021) -
Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines
por: Kulkarni, Neha, et al.
Publicado: (2018) -
Optimizing a Massive Parallel Sequencing Workflow for Quantitative miRNA Expression Analysis
por: Cordero, Francesca, et al.
Publicado: (2012) -
rCASC: reproducible classification analysis of single-cell sequencing data
por: Alessandrì, Luca, et al.
Publicado: (2019) -
SeqBox: RNAseq/ChIPseq reproducible analysis on a consumer game computer
por: Beccuti, Marco, et al.
Publicado: (2018)