Cargando…
Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction
The prediction of antimicrobial resistance (AMR) based on genomic information can improve patient outcomes. Genetic mechanisms have been shown to explain AMR with accuracies in line with standard microbiology laboratory testing. To translate genetic mechanisms into phenotypic AMR, machine learning h...
Autores principales: | Májek, Peter, Lüftinger, Lukas, Beisken, Stephan, Rattei, Thomas, Materna, Arne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657983/ https://www.ncbi.nlm.nih.gov/pubmed/34884852 http://dx.doi.org/10.3390/ijms222313049 |
Ejemplares similares
-
Learning From Limited Data: Towards Best Practice Techniques for Antimicrobial Resistance Prediction From Whole Genome Sequencing Data
por: Lüftinger, Lukas, et al.
Publicado: (2021) -
Metagenomic Antimicrobial Susceptibility Testing from Simulated Native Patient Samples
por: Lüftinger, Lukas, et al.
Publicado: (2023) -
Predictive Antibiotic Susceptibility Testing by Next-Generation Sequencing for Periprosthetic Joint Infections: Potential and Limitations
por: Lüftinger, Lukas, et al.
Publicado: (2021) -
Validation and Application of Long-Read Whole-Genome Sequencing for Antimicrobial Resistance Gene Detection and Antimicrobial Susceptibility Testing
por: Weinmaier, Thomas, et al.
Publicado: (2022) -
Automated antimicrobial susceptibility testing and antimicrobial resistance genotyping using Illumina and Oxford Nanopore Technologies sequencing data among Enterobacteriaceae
por: Conzemius, Rick, et al.
Publicado: (2022)