Cargando…

An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation

In this paper, an inverse method is proposed for measuring the elastoplastic properties of metallic materials using a spherical indentation experiment. In the new method, the elastoplastic parameters are correlated with sub-space coordinates of indentation imprints using proper orthogonal decomposit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mingzhi, Wang, Weidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658099/
https://www.ncbi.nlm.nih.gov/pubmed/34885260
http://dx.doi.org/10.3390/ma14237105
_version_ 1784612649963618304
author Wang, Mingzhi
Wang, Weidong
author_facet Wang, Mingzhi
Wang, Weidong
author_sort Wang, Mingzhi
collection PubMed
description In this paper, an inverse method is proposed for measuring the elastoplastic properties of metallic materials using a spherical indentation experiment. In the new method, the elastoplastic parameters are correlated with sub-space coordinates of indentation imprints using proper orthogonal decomposition (POD), and inverse identification of material properties is solved using a statistical Bayesian framework. The advantage of the method is that model parameters in the numerical optimization process are treated as the stochastic variables, and potential uncertainties can be considered. The posterior results obtained from the measuring method can provide valuable probabilistic information of the estimated elastoplastic properties. The proposed method is verified by the application on 2099-T83 Al-Li alloys. Results indicate that posterior distribution of material parameters exhibits more than one peak region when indentation load is not large enough. In addition, using the weighting imprints under different loads can facilitate the uniqueness in identification of elastoplastic parameters. The influence of the weighting coefficient on posterior identification results is analyzed. The elastoplastic properties identified by indentation and tensile experiment show good agreement. Results indicate that the established measuring method is effective and reliable.
format Online
Article
Text
id pubmed-8658099
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86580992021-12-10 An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation Wang, Mingzhi Wang, Weidong Materials (Basel) Article In this paper, an inverse method is proposed for measuring the elastoplastic properties of metallic materials using a spherical indentation experiment. In the new method, the elastoplastic parameters are correlated with sub-space coordinates of indentation imprints using proper orthogonal decomposition (POD), and inverse identification of material properties is solved using a statistical Bayesian framework. The advantage of the method is that model parameters in the numerical optimization process are treated as the stochastic variables, and potential uncertainties can be considered. The posterior results obtained from the measuring method can provide valuable probabilistic information of the estimated elastoplastic properties. The proposed method is verified by the application on 2099-T83 Al-Li alloys. Results indicate that posterior distribution of material parameters exhibits more than one peak region when indentation load is not large enough. In addition, using the weighting imprints under different loads can facilitate the uniqueness in identification of elastoplastic parameters. The influence of the weighting coefficient on posterior identification results is analyzed. The elastoplastic properties identified by indentation and tensile experiment show good agreement. Results indicate that the established measuring method is effective and reliable. MDPI 2021-11-23 /pmc/articles/PMC8658099/ /pubmed/34885260 http://dx.doi.org/10.3390/ma14237105 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Mingzhi
Wang, Weidong
An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation
title An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation
title_full An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation
title_fullStr An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation
title_full_unstemmed An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation
title_short An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation
title_sort inverse method for measuring elastoplastic properties of metallic materials using bayesian model and residual imprint from spherical indentation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658099/
https://www.ncbi.nlm.nih.gov/pubmed/34885260
http://dx.doi.org/10.3390/ma14237105
work_keys_str_mv AT wangmingzhi aninversemethodformeasuringelastoplasticpropertiesofmetallicmaterialsusingbayesianmodelandresidualimprintfromsphericalindentation
AT wangweidong aninversemethodformeasuringelastoplasticpropertiesofmetallicmaterialsusingbayesianmodelandresidualimprintfromsphericalindentation
AT wangmingzhi inversemethodformeasuringelastoplasticpropertiesofmetallicmaterialsusingbayesianmodelandresidualimprintfromsphericalindentation
AT wangweidong inversemethodformeasuringelastoplasticpropertiesofmetallicmaterialsusingbayesianmodelandresidualimprintfromsphericalindentation