Cargando…

Investigating the Use of Digital Health Technology to Monitor COVID-19 and Its Effects: Protocol for an Observational Study (Covid Collab Study)

BACKGROUND: The ubiquity of mobile phones and increasing use of wearable fitness trackers offer a wide-ranging window into people’s health and well-being. There are clear advantages in using remote monitoring technologies to gain an insight into health, particularly under the shadow of the COVID-19...

Descripción completa

Detalles Bibliográficos
Autores principales: Stewart, Callum, Ranjan, Yatharth, Conde, Pauline, Rashid, Zulqarnain, Sankesara, Heet, Bai, Xi, Dobson, Richard J B, Folarin, Amos A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658240/
https://www.ncbi.nlm.nih.gov/pubmed/34784292
http://dx.doi.org/10.2196/32587
Descripción
Sumario:BACKGROUND: The ubiquity of mobile phones and increasing use of wearable fitness trackers offer a wide-ranging window into people’s health and well-being. There are clear advantages in using remote monitoring technologies to gain an insight into health, particularly under the shadow of the COVID-19 pandemic. OBJECTIVE: Covid Collab is a crowdsourced study that was set up to investigate the feasibility of identifying, monitoring, and understanding the stratification of SARS-CoV-2 infection and recovery through remote monitoring technologies. Additionally, we will assess the impacts of the COVID-19 pandemic and associated social measures on people’s behavior, physical health, and mental well-being. METHODS: Participants will remotely enroll in the study through the Mass Science app to donate historic and prospective mobile phone data, fitness tracking wearable data, and regular COVID-19–related and mental health–related survey data. The data collection period will cover a continuous period (ie, both before and after any reported infections), so that comparisons to a participant’s own baseline can be made. We plan to carry out analyses in several areas, which will cover symptomatology; risk factors; the machine learning–based classification of illness; and trajectories of recovery, mental well-being, and activity. RESULTS: As of June 2021, there are over 17,000 participants—largely from the United Kingdom—and enrollment is ongoing. CONCLUSIONS: This paper introduces a crowdsourced study that will include remotely enrolled participants to record mobile health data throughout the COVID-19 pandemic. The data collected may help researchers investigate a variety of areas, including COVID-19 progression; mental well-being during the pandemic; and the adherence of remote, digitally enrolled participants. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/32587