Cargando…

Combined Inhibition of Bcl2 and Bcr-Abl1 Exercises Anti-Leukemia Activity but Does Not Eradicate the Primitive Leukemic Cells

Background: The management of Philadelphia Chromosome-positive (Ph+) hematological malignancies is strictly correlated to the use of BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, these drugs do not induce leukemic stem cells death and their persistence may generate a disease relapse. Publishe...

Descripción completa

Detalles Bibliográficos
Autores principales: Massimino, Michele, Vigneri, Paolo, Stella, Stefania, Tirrò, Elena, Pennisi, Maria Stella, Parrinello, Laura Nunziatina, Vetro, Calogero, Manzella, Livia, Stagno, Fabio, Di Raimondo, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658323/
https://www.ncbi.nlm.nih.gov/pubmed/34884309
http://dx.doi.org/10.3390/jcm10235606
Descripción
Sumario:Background: The management of Philadelphia Chromosome-positive (Ph+) hematological malignancies is strictly correlated to the use of BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, these drugs do not induce leukemic stem cells death and their persistence may generate a disease relapse. Published reports indicated that Venetoclax, a selective BCL2 inhibitor, could be effective in Ph+ diseases, as BCL2 anti-apoptotic activity is modulated by BCR-ABL1 kinase. We, therefore, investigated if BCL2 inhibition, alone or combined with Nilotinib, a BCR-ABL1 inhibitor, affects the primitive and committed Ph+ cells survival. Methods: We used Ph+ cells isolated from leukemic patients at diagnosis. To estimate the therapeutic efficacy of BCL2 and BCR-ABL1 inhibition we employed long-term culture, proliferation and apoptosis assay. Immunoblot was used to evaluate the ability of treatment to interfere with the down-stream targets of BCR-ABL1. Results: Blocking BCL2, we observed reduced proliferation and clonogenic potential of CML CD34-positive cells and this cytotoxicity was improved by combination with BCR-ABL1 inhibitor. However, BCL2 inhibition, alone or in combination regiment with BCR-ABL1 inhibitor, did not reduce the self-renewal of primitive leukemic cells, while strongly induced cell death on primary Ph+ Acute Lymphoblastic Leukemia (ALL). Conclusion: Our results suggest that primitive CML leukemic cells are not dependent on BCL2 for their persistence and support that committed CML and Ph + ALL cells are dependent by BCL2 and BCR-ABL1 cooperation for their survival. The antileukemic activity of BCL2 and BCR-ABL1 dual targeting may be a useful therapeutic strategy for Ph+ ALL patients.