Cargando…
Microstrip Antenna with High Gain and Strong Directivity Loaded with Cascaded Hexagonal Ring-Shaped Metamaterial
A new cascaded hexagonal ring-shaped metamaterial element is designed, which is arranged periodically and placed on the top of a traditional microstrip antenna to optimize the performance of the traditional antenna. The simulation results show that the new metamaterial microstrip antenna works at ne...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658383/ https://www.ncbi.nlm.nih.gov/pubmed/34885444 http://dx.doi.org/10.3390/ma14237289 |
Sumario: | A new cascaded hexagonal ring-shaped metamaterial element is designed, which is arranged periodically and placed on the top of a traditional microstrip antenna to optimize the performance of the traditional antenna. The simulation results show that the new metamaterial microstrip antenna works at near 10 GHz, the impedance bandwidth is extended by 0.25 GHz and the gain is increased by 113.6% compared with a traditional microstrip antenna. Cross-shaped slots are etched on the ground plate of the microstrip antenna to widen the impedance bandwidth. It is shown that the impedance bandwidths at the resonant frequencies of 10 GHz and 14 GHz are broadened by 0.06 GHz and 0.56 GHz, respectively, and the gain of the slot-etched antenna is 13.454 dB. After the metamaterial unit structure is optimized, a nested double-hexagon ring-shaped electromagnetic metamaterial unit structure is proposed. The metamaterial slot microstrip antenna operates in two frequency bands of 10 GHz and 14 GHz; the relative bandwidths are increased to 16.9% and 19.4% with two working bandwidths of 1.74 GHz and 4.98 GHz, respectively; and the gain and directivity are also improved compared with the traditional microstrip antenna. The metamaterial unit structure proposed in this paper is of certain reference value for the variety of metamaterial and the application of metamaterial in traditional microstrip antennas. |
---|