Cargando…
Prediction of Different Eye Diseases Based on Fundus Photography via Deep Transfer Learning
With recent advancements in machine learning, especially in deep learning, the prediction of eye diseases based on fundus photography using deep convolutional neural networks (DCNNs) has attracted great attention. However, studies focusing on identifying the right disease among several candidates, w...
Autores principales: | Guo, Chen, Yu, Minzhong, Li, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658397/ https://www.ncbi.nlm.nih.gov/pubmed/34884192 http://dx.doi.org/10.3390/jcm10235481 |
Ejemplares similares
-
Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography
por: Oh, Richul, et al.
Publicado: (2023) -
A deep learning model for generating fundus autofluorescence images from color fundus photography
por: Song, Fan, et al.
Publicado: (2023) -
A self-adaptive deep learning method for automated eye laterality detection based on color fundus photography
por: Liu, Chi, et al.
Publicado: (2019) -
Smartphone Fundus Photography
por: Nazari Khanamiri, Hossein, et al.
Publicado: (2017) -
Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography
por: Yang, Hyunmo, et al.
Publicado: (2022)