Cargando…

Shear Strength Characteristics of Recycled Concrete Aggregate and Recycled Tire Waste Mixtures from Monotonic Triaxial Tests

Recycled concrete aggregate (RCA) is a promising substitute for natural aggregates and the reuse of this material can benefit construction projects both economically and environmentally. RCA has received great attention in recent years in the form of aggregate as well as a geotechnical material of s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gabryś, Katarzyna, Radzevičius, Algirdas, Szymański, Alojzy, Šadzevičius, Raimondas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658416/
https://www.ncbi.nlm.nih.gov/pubmed/34885554
http://dx.doi.org/10.3390/ma14237400
Descripción
Sumario:Recycled concrete aggregate (RCA) is a promising substitute for natural aggregates and the reuse of this material can benefit construction projects both economically and environmentally. RCA has received great attention in recent years in the form of aggregate as well as a geotechnical material of sand size. Next to RCA, another recycled material, which reduces the waste volume and is a part of the present challenges in civil engineering, is tire waste. Despite the good engineering properties of recycled tire waste (RTW), its use is still limited, even after almost 30 years since they were first introduced. To broaden the applicability of reused concrete and rubber, a further understanding of their properties and engineering behavior is required. For this reason, the main subject of this paper is composite materials that consist of anthropogenic soil recycled concrete aggregate (RCA) and crushed pieces of recycled tire waste (RTW). In this study, a series of isotropic consolidated drained triaxial tests were undertaken to characterize the shear strength of eight mixtures of variable grain-size distribution, rubber inclusion (RC), and fine fraction (FF) content. The results show that the introduction of rubber waste leads to changes in the strength parameters of the tested mixtures. Improvements in RCA shear strength were observed, the largest for the mixture M7 with 10% of recycled tire waste. Similarly, the effect of fine fraction content on the angle of internal friction and cohesion was found. Dilation characteristics were observed in all analyzed composites. Based on the results of all tests performed, including physical, geometric, chemical, and mechanical properties of the created composites, it can be stated that the samples would meet local road authority requirements for sub-base applications.