Cargando…
The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes
The physicochemical properties of synthetically produced bone substitute materials (BSM) have a major impact on biocompatibility. This affects bony tissue integration, osteoconduction, as well as the degradation pattern and the correlated inflammatory tissue responses including macrophages and multi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658545/ https://www.ncbi.nlm.nih.gov/pubmed/34885527 http://dx.doi.org/10.3390/ma14237372 |
_version_ | 1784612756988624896 |
---|---|
author | Abels, Manuel Alkildani, Said Pröhl, Annica Xiong, Xin Krastev, Rumen Korzinskas, Tadas Stojanovic, Sanja Jung, Ole Najman, Stevo Barbeck, Mike |
author_facet | Abels, Manuel Alkildani, Said Pröhl, Annica Xiong, Xin Krastev, Rumen Korzinskas, Tadas Stojanovic, Sanja Jung, Ole Najman, Stevo Barbeck, Mike |
author_sort | Abels, Manuel |
collection | PubMed |
description | The physicochemical properties of synthetically produced bone substitute materials (BSM) have a major impact on biocompatibility. This affects bony tissue integration, osteoconduction, as well as the degradation pattern and the correlated inflammatory tissue responses including macrophages and multinucleated giant cells (MNGCs). Thus, influencing factors such as size, special surface morphologies, porosity, and interconnectivity have been the subject of extensive research. In the present publication, the influence of the granule size of three identically manufactured bone substitute granules based on the technology of hydroxyapatite (HA)-forming calcium phosphate cements were investigated, which includes the inflammatory response in the surrounding tissue and especially the induction of MNGCs (as a parameter of the material degradation). For the in vivo study, granules of three different size ranges (small = 0.355–0.5 mm; medium = 0.5–1 mm; big = 1–2 mm) were implanted in the subcutaneous connective tissue of 45 male BALB/c mice. At 10, 30, and 60 days post implantationem, the materials were explanted and histologically processed. The defect areas were initially examined histopathologically. Furthermore, pro- and anti-inflammatory macrophages were quantified histomorphometrically after their immunohistochemical detection. The number of MNGCs was quantified as well using a histomorphometrical approach. The results showed a granule size-dependent integration behavior. The surrounding granulation tissue has passivated in the groups of the two bigger granules at 60 days post implantationem including a fibrotic encapsulation, while a granulation tissue was still present in the group of the small granules indicating an ongoing cell-based degradation process. The histomorphometrical analysis showed that the number of proinflammatory macrophages was significantly increased in the small granules at 60 days post implantationem. Similarly, a significant increase of MNGCs was detected in this group at 30 and 60 days post implantationem. Based on these data, it can be concluded that the integration and/or degradation behavior of synthetic bone substitutes can be influenced by granule size. |
format | Online Article Text |
id | pubmed-8658545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86585452021-12-10 The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes Abels, Manuel Alkildani, Said Pröhl, Annica Xiong, Xin Krastev, Rumen Korzinskas, Tadas Stojanovic, Sanja Jung, Ole Najman, Stevo Barbeck, Mike Materials (Basel) Article The physicochemical properties of synthetically produced bone substitute materials (BSM) have a major impact on biocompatibility. This affects bony tissue integration, osteoconduction, as well as the degradation pattern and the correlated inflammatory tissue responses including macrophages and multinucleated giant cells (MNGCs). Thus, influencing factors such as size, special surface morphologies, porosity, and interconnectivity have been the subject of extensive research. In the present publication, the influence of the granule size of three identically manufactured bone substitute granules based on the technology of hydroxyapatite (HA)-forming calcium phosphate cements were investigated, which includes the inflammatory response in the surrounding tissue and especially the induction of MNGCs (as a parameter of the material degradation). For the in vivo study, granules of three different size ranges (small = 0.355–0.5 mm; medium = 0.5–1 mm; big = 1–2 mm) were implanted in the subcutaneous connective tissue of 45 male BALB/c mice. At 10, 30, and 60 days post implantationem, the materials were explanted and histologically processed. The defect areas were initially examined histopathologically. Furthermore, pro- and anti-inflammatory macrophages were quantified histomorphometrically after their immunohistochemical detection. The number of MNGCs was quantified as well using a histomorphometrical approach. The results showed a granule size-dependent integration behavior. The surrounding granulation tissue has passivated in the groups of the two bigger granules at 60 days post implantationem including a fibrotic encapsulation, while a granulation tissue was still present in the group of the small granules indicating an ongoing cell-based degradation process. The histomorphometrical analysis showed that the number of proinflammatory macrophages was significantly increased in the small granules at 60 days post implantationem. Similarly, a significant increase of MNGCs was detected in this group at 30 and 60 days post implantationem. Based on these data, it can be concluded that the integration and/or degradation behavior of synthetic bone substitutes can be influenced by granule size. MDPI 2021-12-01 /pmc/articles/PMC8658545/ /pubmed/34885527 http://dx.doi.org/10.3390/ma14237372 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abels, Manuel Alkildani, Said Pröhl, Annica Xiong, Xin Krastev, Rumen Korzinskas, Tadas Stojanovic, Sanja Jung, Ole Najman, Stevo Barbeck, Mike The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes |
title | The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes |
title_full | The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes |
title_fullStr | The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes |
title_full_unstemmed | The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes |
title_short | The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes |
title_sort | granule size mediates the in vivo foreign body response and the integration behavior of bone substitutes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658545/ https://www.ncbi.nlm.nih.gov/pubmed/34885527 http://dx.doi.org/10.3390/ma14237372 |
work_keys_str_mv | AT abelsmanuel thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT alkildanisaid thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT prohlannica thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT xiongxin thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT krastevrumen thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT korzinskastadas thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT stojanovicsanja thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT jungole thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT najmanstevo thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT barbeckmike thegranulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT abelsmanuel granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT alkildanisaid granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT prohlannica granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT xiongxin granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT krastevrumen granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT korzinskastadas granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT stojanovicsanja granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT jungole granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT najmanstevo granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes AT barbeckmike granulesizemediatestheinvivoforeignbodyresponseandtheintegrationbehaviorofbonesubstitutes |