Cargando…

Parametric Effects of Single Point Incremental Forming on Hardness of AA1100 Aluminium Alloy Sheets

When using a unique tool with different controlled path strategies in the absence of a punch and die, the local plastic deformation of a sheet is called Single Point Incremental Forming (SPIF). The lack of available knowledge regarding SPIF parameters and their effects on components has made the ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Najm, Sherwan Mohammed, Paniti, Imre, Trzepieciński, Tomasz, Nama, Sami Ali, Viharos, Zsolt János, Jacso, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658562/
https://www.ncbi.nlm.nih.gov/pubmed/34885418
http://dx.doi.org/10.3390/ma14237263
Descripción
Sumario:When using a unique tool with different controlled path strategies in the absence of a punch and die, the local plastic deformation of a sheet is called Single Point Incremental Forming (SPIF). The lack of available knowledge regarding SPIF parameters and their effects on components has made the industry reluctant to embrace this technology. To make SPIF a significant industrial application and to convince the industry to use this technology, it is important to study mechanical properties and effective parameters prior to and after the forming process. Moreover, in order to produce a SPIF component with sufficient quality without defects, optimal process parameters should be selected. In this context, this paper offers insight into the effects of the forming tool diameter, coolant type, tool speed, and feed rates on the hardness of AA1100 aluminium alloy sheet material. Based on the research parameters, different regression equations were generated to calculate hardness. As opposed to the experimental approach, regression equations enable researchers to estimate hardness values relatively quickly and in a practicable way. The Relative Importance (RI) of SPIF parameters for expected hardness, determined with the partitioning weight method of an Artificial Neural Network (ANN), is also presented in the study. The analysis of the test results showed that hardness noticeably increased when tool speed increased. An increase in feed rate also led to an increase in hardness. In addition, the effects of various greases and coolant oil were studied using the same feed rates; when coolant oil was used, hardness increased, and when grease was applied, hardness decreased.