Cargando…
Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
This study provides the application of a machine learning-based algorithm approach names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model is based on previously report...
Autores principales: | Ilyas, Israr, Zafar, Adeel, Javed, Muhammad Faisal, Farooq, Furqan, Aslam, Fahid, Musarat, Muhammad Ali, Vatin, Nikolai Ivanovich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658637/ https://www.ncbi.nlm.nih.gov/pubmed/34885289 http://dx.doi.org/10.3390/ma14237134 |
Ejemplares similares
-
Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP
por: Nafees, Afnan, et al.
Publicado: (2021) -
Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2022) -
Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence
por: Khan, Sangeen, et al.
Publicado: (2021) -
Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques
por: Nafees, Afnan, et al.
Publicado: (2021) -
Axial Compressive Strength Models of Eccentrically-Loaded Rectangular Reinforced Concrete Columns Confined with FRP
por: Isleem, Haytham F., et al.
Publicado: (2021)