Cargando…
Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †
Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN](4) (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658641/ https://www.ncbi.nlm.nih.gov/pubmed/34885290 http://dx.doi.org/10.3390/ma14237135 |
_version_ | 1784612778267377664 |
---|---|
author | Maskowicz, Dominik Jendrzejewski, Rafał Kopeć, Wioletta Gazda, Maria Karczewski, Jakub Niedziałkowski, Paweł Kleibert, Armin Vaz, Carlos A. F. Garcia, Yann Sawczak, Mirosław |
author_facet | Maskowicz, Dominik Jendrzejewski, Rafał Kopeć, Wioletta Gazda, Maria Karczewski, Jakub Niedziałkowski, Paweł Kleibert, Armin Vaz, Carlos A. F. Garcia, Yann Sawczak, Mirosław |
author_sort | Maskowicz, Dominik |
collection | PubMed |
description | Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN](4) (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN](4) nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures. |
format | Online Article Text |
id | pubmed-8658641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86586412021-12-10 Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † Maskowicz, Dominik Jendrzejewski, Rafał Kopeć, Wioletta Gazda, Maria Karczewski, Jakub Niedziałkowski, Paweł Kleibert, Armin Vaz, Carlos A. F. Garcia, Yann Sawczak, Mirosław Materials (Basel) Article Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN](4) (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN](4) nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures. MDPI 2021-11-24 /pmc/articles/PMC8658641/ /pubmed/34885290 http://dx.doi.org/10.3390/ma14237135 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Maskowicz, Dominik Jendrzejewski, Rafał Kopeć, Wioletta Gazda, Maria Karczewski, Jakub Niedziałkowski, Paweł Kleibert, Armin Vaz, Carlos A. F. Garcia, Yann Sawczak, Mirosław Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † |
title | Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † |
title_full | Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † |
title_fullStr | Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † |
title_full_unstemmed | Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † |
title_short | Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † |
title_sort | thin films of nanocrystalline fe(pz)[pt(cn)(4)] deposited by resonant matrix-assisted pulsed laser evaporation † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658641/ https://www.ncbi.nlm.nih.gov/pubmed/34885290 http://dx.doi.org/10.3390/ma14237135 |
work_keys_str_mv | AT maskowiczdominik thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT jendrzejewskirafał thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT kopecwioletta thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT gazdamaria thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT karczewskijakub thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT niedziałkowskipaweł thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT kleibertarmin thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT vazcarlosaf thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT garciayann thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation AT sawczakmirosław thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation |