Cargando…

Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN](4) (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin...

Descripción completa

Detalles Bibliográficos
Autores principales: Maskowicz, Dominik, Jendrzejewski, Rafał, Kopeć, Wioletta, Gazda, Maria, Karczewski, Jakub, Niedziałkowski, Paweł, Kleibert, Armin, Vaz, Carlos A. F., Garcia, Yann, Sawczak, Mirosław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658641/
https://www.ncbi.nlm.nih.gov/pubmed/34885290
http://dx.doi.org/10.3390/ma14237135
_version_ 1784612778267377664
author Maskowicz, Dominik
Jendrzejewski, Rafał
Kopeć, Wioletta
Gazda, Maria
Karczewski, Jakub
Niedziałkowski, Paweł
Kleibert, Armin
Vaz, Carlos A. F.
Garcia, Yann
Sawczak, Mirosław
author_facet Maskowicz, Dominik
Jendrzejewski, Rafał
Kopeć, Wioletta
Gazda, Maria
Karczewski, Jakub
Niedziałkowski, Paweł
Kleibert, Armin
Vaz, Carlos A. F.
Garcia, Yann
Sawczak, Mirosław
author_sort Maskowicz, Dominik
collection PubMed
description Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN](4) (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN](4) nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.
format Online
Article
Text
id pubmed-8658641
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86586412021-12-10 Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation † Maskowicz, Dominik Jendrzejewski, Rafał Kopeć, Wioletta Gazda, Maria Karczewski, Jakub Niedziałkowski, Paweł Kleibert, Armin Vaz, Carlos A. F. Garcia, Yann Sawczak, Mirosław Materials (Basel) Article Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN](4) (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN](4) nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures. MDPI 2021-11-24 /pmc/articles/PMC8658641/ /pubmed/34885290 http://dx.doi.org/10.3390/ma14237135 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Maskowicz, Dominik
Jendrzejewski, Rafał
Kopeć, Wioletta
Gazda, Maria
Karczewski, Jakub
Niedziałkowski, Paweł
Kleibert, Armin
Vaz, Carlos A. F.
Garcia, Yann
Sawczak, Mirosław
Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †
title Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †
title_full Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †
title_fullStr Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †
title_full_unstemmed Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †
title_short Thin Films of Nanocrystalline Fe(pz)[Pt(CN)(4)] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation †
title_sort thin films of nanocrystalline fe(pz)[pt(cn)(4)] deposited by resonant matrix-assisted pulsed laser evaporation †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658641/
https://www.ncbi.nlm.nih.gov/pubmed/34885290
http://dx.doi.org/10.3390/ma14237135
work_keys_str_mv AT maskowiczdominik thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT jendrzejewskirafał thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT kopecwioletta thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT gazdamaria thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT karczewskijakub thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT niedziałkowskipaweł thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT kleibertarmin thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT vazcarlosaf thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT garciayann thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation
AT sawczakmirosław thinfilmsofnanocrystallinefepzptcn4depositedbyresonantmatrixassistedpulsedlaserevaporation