Cargando…

Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center

Rationale: Posttraumatic epilepsy (PTE) is a common cause of morbidity in children after a traumatic brain injury (TBI), occurring in 10–20% of children following severe TBI. PTE is diagnosed after two or more unprovoked seizures occurring 1-week post TBI. More often, studies have focused on childre...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jun T., DeLozier, Sarah J., Chugani, Harry T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658671/
https://www.ncbi.nlm.nih.gov/pubmed/34884396
http://dx.doi.org/10.3390/jcm10235695
_version_ 1784612785337925632
author Park, Jun T.
DeLozier, Sarah J.
Chugani, Harry T.
author_facet Park, Jun T.
DeLozier, Sarah J.
Chugani, Harry T.
author_sort Park, Jun T.
collection PubMed
description Rationale: Posttraumatic epilepsy (PTE) is a common cause of morbidity in children after a traumatic brain injury (TBI), occurring in 10–20% of children following severe TBI. PTE is diagnosed after two or more unprovoked seizures occurring 1-week post TBI. More often, studies have focused on children with epilepsy due to severe TBI. We aim to understand the utility of head computed tomography (HCT), EEG, and the risk of developing drug-resistant epilepsy in children after mild TBI. Method: We retrospectively studied 321 children with TBI at a tertiary pediatric referral center during a 10-year period. Mild TBI was defined as loss of consciousness (LOC) or amnesia < 30 min, moderate TBI as LOC or amnesia between 30 min and 1 day, and severe TBI as LOC or amnesia > 1 day, subdural hemorrhage, or contusion. Multiple clinical variables were reviewed, including past and present antiepileptic drug(s), seizure control, and mode of injury. First and subsequent post-TBI EEGs/prolonged video-EEGs were obtained acutely, subacutely, and/or chronically (range, day 1–3 years, median 1 month). Descriptive analyses were conducted using medians and ranges for continuous data. Categorical data were reported using frequencies and percentages, while comparisons between groups were made using Fisher’s exact test for small sample sizes. Results: Forty-seven children were diagnosed with posttraumatic epilepsy: eight children (17%) due to mild TBI, 39 children (83%) due to severe TBI. For the eight children with mild TBI whom all had an accidental trauma (non-inflicted), the median follow-up time was 25 months (range 1.5 months–84 months). The median age was 10 years (range 4–18 years), and the median age at the time of injury was seven years (range: 23 months–13 years). No relevant previous medical history was present for six patients (80%), and two patients’ (20%) relevant previous medical histories were unknown. Seven patients (88%) had no history of seizures, and patient #6 (12%) had unknown seizure history. Six patients (75%) had normal routine EEG(s). Patient #6 (13%) had an abnormal VEEG 3 months after the initial normal routine EEG, while patient #1 (13%) had an initial prolonged EEG 8 months after TBI. Compared to the 39 patients with severe TBI, 31 (79%) of whom had abnormal EEGs (routine and/or prolonged with video), mild TBI patients were more likely to have normal EEGs, p = 0.005. Head CT scans were obtained acutely for seven patients (90%), all of which were normal. One patient only had brain magnetic resonance imaging (MRI) 8 months after the injury. Compared to the 39 patients with severe TBI, all of whom had abnormal HCTs, mild TBI patients were less likely to have abnormal HCTs, p < 0.0001. In patients with mild TBI, no patient had both abnormal EEG/VEEG and HCT, and no one was on more than one Antiepileptic drug (AED), p < 0.005. Six patients (75%) had MRIs, of which five (63%) were normal. Two patients (#1, 7) did not have MRIs, while one patient’s (#4) MRI was unavailable. Five patients (63%) had a seizure <24 h post TBI, while the rest had seizures after the first week of injury. Conclusion: Children with epilepsy due to mild TBI, loss of consciousness, or amnesia < 30 min are more likely to have normal HCT and EEG and to be on 0–1 AED. Limitations of our study include the small sample size and retrospective design. The current findings add to the paucity of data in children who suffer from epilepsy due to mild TBI.
format Online
Article
Text
id pubmed-8658671
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86586712021-12-10 Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center Park, Jun T. DeLozier, Sarah J. Chugani, Harry T. J Clin Med Article Rationale: Posttraumatic epilepsy (PTE) is a common cause of morbidity in children after a traumatic brain injury (TBI), occurring in 10–20% of children following severe TBI. PTE is diagnosed after two or more unprovoked seizures occurring 1-week post TBI. More often, studies have focused on children with epilepsy due to severe TBI. We aim to understand the utility of head computed tomography (HCT), EEG, and the risk of developing drug-resistant epilepsy in children after mild TBI. Method: We retrospectively studied 321 children with TBI at a tertiary pediatric referral center during a 10-year period. Mild TBI was defined as loss of consciousness (LOC) or amnesia < 30 min, moderate TBI as LOC or amnesia between 30 min and 1 day, and severe TBI as LOC or amnesia > 1 day, subdural hemorrhage, or contusion. Multiple clinical variables were reviewed, including past and present antiepileptic drug(s), seizure control, and mode of injury. First and subsequent post-TBI EEGs/prolonged video-EEGs were obtained acutely, subacutely, and/or chronically (range, day 1–3 years, median 1 month). Descriptive analyses were conducted using medians and ranges for continuous data. Categorical data were reported using frequencies and percentages, while comparisons between groups were made using Fisher’s exact test for small sample sizes. Results: Forty-seven children were diagnosed with posttraumatic epilepsy: eight children (17%) due to mild TBI, 39 children (83%) due to severe TBI. For the eight children with mild TBI whom all had an accidental trauma (non-inflicted), the median follow-up time was 25 months (range 1.5 months–84 months). The median age was 10 years (range 4–18 years), and the median age at the time of injury was seven years (range: 23 months–13 years). No relevant previous medical history was present for six patients (80%), and two patients’ (20%) relevant previous medical histories were unknown. Seven patients (88%) had no history of seizures, and patient #6 (12%) had unknown seizure history. Six patients (75%) had normal routine EEG(s). Patient #6 (13%) had an abnormal VEEG 3 months after the initial normal routine EEG, while patient #1 (13%) had an initial prolonged EEG 8 months after TBI. Compared to the 39 patients with severe TBI, 31 (79%) of whom had abnormal EEGs (routine and/or prolonged with video), mild TBI patients were more likely to have normal EEGs, p = 0.005. Head CT scans were obtained acutely for seven patients (90%), all of which were normal. One patient only had brain magnetic resonance imaging (MRI) 8 months after the injury. Compared to the 39 patients with severe TBI, all of whom had abnormal HCTs, mild TBI patients were less likely to have abnormal HCTs, p < 0.0001. In patients with mild TBI, no patient had both abnormal EEG/VEEG and HCT, and no one was on more than one Antiepileptic drug (AED), p < 0.005. Six patients (75%) had MRIs, of which five (63%) were normal. Two patients (#1, 7) did not have MRIs, while one patient’s (#4) MRI was unavailable. Five patients (63%) had a seizure <24 h post TBI, while the rest had seizures after the first week of injury. Conclusion: Children with epilepsy due to mild TBI, loss of consciousness, or amnesia < 30 min are more likely to have normal HCT and EEG and to be on 0–1 AED. Limitations of our study include the small sample size and retrospective design. The current findings add to the paucity of data in children who suffer from epilepsy due to mild TBI. MDPI 2021-12-03 /pmc/articles/PMC8658671/ /pubmed/34884396 http://dx.doi.org/10.3390/jcm10235695 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Park, Jun T.
DeLozier, Sarah J.
Chugani, Harry T.
Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center
title Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center
title_full Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center
title_fullStr Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center
title_full_unstemmed Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center
title_short Epilepsy Due to Mild TBI in Children: An Experience at a Tertiary Referral Center
title_sort epilepsy due to mild tbi in children: an experience at a tertiary referral center
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658671/
https://www.ncbi.nlm.nih.gov/pubmed/34884396
http://dx.doi.org/10.3390/jcm10235695
work_keys_str_mv AT parkjunt epilepsyduetomildtbiinchildrenanexperienceatatertiaryreferralcenter
AT deloziersarahj epilepsyduetomildtbiinchildrenanexperienceatatertiaryreferralcenter
AT chuganiharryt epilepsyduetomildtbiinchildrenanexperienceatatertiaryreferralcenter