Cargando…
Parsimonious Optimization of Multitask Neural Network Hyperparameters
Neural networks are rapidly gaining popularity in chemical modeling and Quantitative Structure–Activity Relationship (QSAR) thanks to their ability to handle multitask problems. However, outcomes of neural networks depend on the tuning of several hyperparameters, whose small variations can often str...
Autores principales: | Valsecchi, Cecile, Consonni, Viviana, Todeschini, Roberto, Orlandi, Marco Emilio, Gosetti, Fabio, Ballabio, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658836/ https://www.ncbi.nlm.nih.gov/pubmed/34885837 http://dx.doi.org/10.3390/molecules26237254 |
Ejemplares similares
-
Multi-Task Neural Networks and Molecular Fingerprints to Enhance Compound Identification from LC-MS/MS Data
por: Consonni, Viviana, et al.
Publicado: (2022) -
From the Streets to the Judicial Evidence: Determination of Traditional Illicit Substances in Drug Seizures by a Rapid and Sensitive UHPLC-MS/MS-Based Platform
por: Gosetti, Fabio, et al.
Publicado: (2022) -
Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes
por: Motta, Daniel, et al.
Publicado: (2020) -
Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions
por: Sahigara, Faizan, et al.
Publicado: (2013) -
Mixtures, metabolites, ionic liquids: a new measure to evaluate similarity between complex chemical systems
por: Mauri, Andrea, et al.
Publicado: (2016)