Cargando…
CRNNTL: Convolutional Recurrent Neural Network and Transfer Learning for QSAR Modeling in Organic Drug and Material Discovery
Molecular latent representations, derived from autoencoders (AEs), have been widely used for drug or material discovery over the past couple of years. In particular, a variety of machine learning methods based on latent representations have shown excellent performance on quantitative structure–activ...
Autores principales: | Li, Yaqin, Xu, Yongjin, Yu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658888/ https://www.ncbi.nlm.nih.gov/pubmed/34885843 http://dx.doi.org/10.3390/molecules26237257 |
Ejemplares similares
-
Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
por: Moldovan, Adrian, et al.
Publicado: (2021) -
Comprehensive ensemble in QSAR prediction for drug discovery
por: Kwon, Sunyoung, et al.
Publicado: (2019) -
Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery
por: Ponzoni, Ignacio, et al.
Publicado: (2017) -
Meta-QSAR: a large-scale application of meta-learning to drug design and discovery
por: Olier, Ivan, et al.
Publicado: (2017) -
QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery
por: Neves, Bruno J., et al.
Publicado: (2018)