Cargando…

Optimization of Fluoride Adsorption on Acid Modified Bentonite Clay Using Fixed-Bed Column by Response Surface Method

Using small-scale batch tests, various researchers investigated the adsorptive removal of fluoride using low-cost clay minerals, such as Bentonite. In this study, Column adsorption studies were used to investigate the removal of fluoride from aqueous solution using acid-treated Bentonite (ATB). The...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalsido, Adane Woldemedhin, Meshesha, Beteley Tekola, Behailu, Beshah M., Alemayehu, Esayas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658911/
https://www.ncbi.nlm.nih.gov/pubmed/34885692
http://dx.doi.org/10.3390/molecules26237112
Descripción
Sumario:Using small-scale batch tests, various researchers investigated the adsorptive removal of fluoride using low-cost clay minerals, such as Bentonite. In this study, Column adsorption studies were used to investigate the removal of fluoride from aqueous solution using acid-treated Bentonite (ATB). The effects of initial fluoride concentration, flow rates, and bed depth on fluoride removal efficiency (R) and adsorption capability (qe) in continuous settings were investigated, and the optimal operating condition was determined using central composite design (CCD). The model’s suitability was determined by examining the relationship between experimental and expected response values. The analysis of variance was used to determine the importance of independent variables and their interactions. The optimal values were determined as the initial concentration of 5.51 mg/L, volumetric flow rate of 17.2 mL/min and adsorbent packed-bed depth of 8.88 cm, with % removal of 100, adsorptive capacity of 2.46 mg/g and desirability of 1.0. This output reveals that an acid activation of Bentonite has made the adsorbent successful for field application.