Cargando…
A Phase-Field Study of Microstructure Evolution in Tungsten Polycrystalline under He/D Irradiation
Analyses in the present study focus on understanding the evolution of the tungsten microstructure under He/D irradiation. A fractal dimension analysis was utilized to characterize the structural pattern of the microstructure irradiated by both low (10–80 eV) and high (8–30 keV) irradiation energy. A...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658965/ https://www.ncbi.nlm.nih.gov/pubmed/34885589 http://dx.doi.org/10.3390/ma14237433 |
Sumario: | Analyses in the present study focus on understanding the evolution of the tungsten microstructure under He/D irradiation. A fractal dimension analysis was utilized to characterize the structural pattern of the microstructure irradiated by both low (10–80 eV) and high (8–30 keV) irradiation energy. All examined W microstructures show a direct correlation between the fractal dimension and irradiation energy. Analyses establish an empirical relation expressing a change in the microstructure as a function of the irradiation energy based on the changes in the fractal dimension of the microstructures. The proposed relation was implemented in the phase-field model formulation with an account of the interfacial energy induced by the crystallographic mismatch between grains under irradiation. The current phase-field model captures the evolution of the void under irradiation, including nucleation and the growth of voids, and sink efficiency for vacancy annihilation in the vicinity of grain boundaries. |
---|