Cargando…

The Interdiffusion Behavior of NiCoCrAlYHf Coating Deposited by Arc Ion Plating on Carburized Ni-Based Single Crystal Superalloy

In the present study, arc ion plating (AIP) was used to prepare a NiCoCrAlYHf coating (HY5 coating) on a carburized third-generation single-crystal superalloy DD10. The interdiffusion behavior of the carburized superalloy with an HY5 coating was investigated for a 1000 h oxidation time at 1100 °C. C...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zun, Zhong, Jinyan, Yang, Shanglin, Li, Songmei, Liu, Jianhua, Yu, Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659011/
https://www.ncbi.nlm.nih.gov/pubmed/34885557
http://dx.doi.org/10.3390/ma14237401
Descripción
Sumario:In the present study, arc ion plating (AIP) was used to prepare a NiCoCrAlYHf coating (HY5 coating) on a carburized third-generation single-crystal superalloy DD10. The interdiffusion behavior of the carburized superalloy with an HY5 coating was investigated for a 1000 h oxidation time at 1100 °C. Carburization enhanced the interfacial bonding force and improved the microstructure of the NiCoCrAlYHf coating. An interdiffusion zone (IDZ) formed after a 300 h oxidation time, and the formation of a carburized layer effectively suppressed an inward diffusion of cobalt, aluminium, and chromium to the DD10 superalloy as well as an outward diffusion of nickel and refractory elements for instance rhenium and tungsten to the HY5 coating that occurred in static air at 1100 °C. The roles of the carburized layer in affecting thermal cyclic oxidation and element interdiffusion were studied. Subsequently, a modified form of the Boltzmann–Matano analysis was used to present the interdiffusion coefficients of aluminium.