Cargando…
A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh)
Recovery of platinum group metals from spent materials is becoming increasingly relevant due to the high value of these metals and their progressive depletion. In recent years, there is an increased interest in developing alternative and more environmentally benign processes for the recovery of plat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659014/ https://www.ncbi.nlm.nih.gov/pubmed/34885786 http://dx.doi.org/10.3390/molecules26237204 |
_version_ | 1784612865385168896 |
---|---|
author | Lanaridi, Olga Platzer, Sonja Nischkauer, Winfried Limbeck, Andreas Schnürch, Michael Bica-Schröder, Katharina |
author_facet | Lanaridi, Olga Platzer, Sonja Nischkauer, Winfried Limbeck, Andreas Schnürch, Michael Bica-Schröder, Katharina |
author_sort | Lanaridi, Olga |
collection | PubMed |
description | Recovery of platinum group metals from spent materials is becoming increasingly relevant due to the high value of these metals and their progressive depletion. In recent years, there is an increased interest in developing alternative and more environmentally benign processes for the recovery of platinum group metals, in line with the increased focus on a sustainable future. To this end, ionic liquids are increasingly investigated as promising candidates that can replace state-of-the-art approaches. Specifically, phosphonium-based ionic liquids have been extensively investigated for the extraction and separation of platinum group metals. In this paper, we present the extraction capacity of several phosphonium-based ionic liquids for platinum group metals from model deep eutectic solvent-based acidic solutions. The most promising candidates, P(66614)Cl and P(66614)B2EHP, which exhibited the ability to extract Pt, Pd, and Rh quantitively from a mixed model solution, were additionally evaluated for their capacity to recover these metals from a spent car catalyst previously leached into a choline-based deep eutectic solvent. Specifically, P(66614)Cl afforded extraction of the three target precious metals from the leachate, while their partial separation from the interfering Al was also achieved since a significant amount (approx. 80%) remained in the leachate. |
format | Online Article Text |
id | pubmed-8659014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86590142021-12-10 A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh) Lanaridi, Olga Platzer, Sonja Nischkauer, Winfried Limbeck, Andreas Schnürch, Michael Bica-Schröder, Katharina Molecules Article Recovery of platinum group metals from spent materials is becoming increasingly relevant due to the high value of these metals and their progressive depletion. In recent years, there is an increased interest in developing alternative and more environmentally benign processes for the recovery of platinum group metals, in line with the increased focus on a sustainable future. To this end, ionic liquids are increasingly investigated as promising candidates that can replace state-of-the-art approaches. Specifically, phosphonium-based ionic liquids have been extensively investigated for the extraction and separation of platinum group metals. In this paper, we present the extraction capacity of several phosphonium-based ionic liquids for platinum group metals from model deep eutectic solvent-based acidic solutions. The most promising candidates, P(66614)Cl and P(66614)B2EHP, which exhibited the ability to extract Pt, Pd, and Rh quantitively from a mixed model solution, were additionally evaluated for their capacity to recover these metals from a spent car catalyst previously leached into a choline-based deep eutectic solvent. Specifically, P(66614)Cl afforded extraction of the three target precious metals from the leachate, while their partial separation from the interfering Al was also achieved since a significant amount (approx. 80%) remained in the leachate. MDPI 2021-11-27 /pmc/articles/PMC8659014/ /pubmed/34885786 http://dx.doi.org/10.3390/molecules26237204 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lanaridi, Olga Platzer, Sonja Nischkauer, Winfried Limbeck, Andreas Schnürch, Michael Bica-Schröder, Katharina A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh) |
title | A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh) |
title_full | A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh) |
title_fullStr | A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh) |
title_full_unstemmed | A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh) |
title_short | A Combined Deep Eutectic Solvent–Ionic Liquid Process for the Extraction and Separation of Platinum Group Metals (Pt, Pd, Rh) |
title_sort | combined deep eutectic solvent–ionic liquid process for the extraction and separation of platinum group metals (pt, pd, rh) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659014/ https://www.ncbi.nlm.nih.gov/pubmed/34885786 http://dx.doi.org/10.3390/molecules26237204 |
work_keys_str_mv | AT lanaridiolga acombineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT platzersonja acombineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT nischkauerwinfried acombineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT limbeckandreas acombineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT schnurchmichael acombineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT bicaschroderkatharina acombineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT lanaridiolga combineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT platzersonja combineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT nischkauerwinfried combineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT limbeckandreas combineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT schnurchmichael combineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh AT bicaschroderkatharina combineddeepeutecticsolventionicliquidprocessfortheextractionandseparationofplatinumgroupmetalsptpdrh |