Cargando…

Entrained Flow Gasification of Polypropylene Pyrolysis Oil

Petrochemical products could be produced from circular feedstock, such as waste plastics. Most plants that utilize syngas in their production are today equipped with entrained flow gasifiers, as this type of gasifier generates the highest syngas quality. However, feeding of circular feedstocks to an...

Descripción completa

Detalles Bibliográficos
Autores principales: Weiland, Fredrik, Qureshi, Muhammad Saad, Wennebro, Jonas, Lindfors, Christian, Ohra-aho, Taina, Shafaghat, Hoda, Johansson, Ann-Christine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659146/
https://www.ncbi.nlm.nih.gov/pubmed/34885899
http://dx.doi.org/10.3390/molecules26237317
Descripción
Sumario:Petrochemical products could be produced from circular feedstock, such as waste plastics. Most plants that utilize syngas in their production are today equipped with entrained flow gasifiers, as this type of gasifier generates the highest syngas quality. However, feeding of circular feedstocks to an entrained flow gasifier can be problematic. Therefore, in this work, a two-step process was studied, in which polypropylene was pre-treated by pyrolysis to produce a liquid intermediate that was easily fed to the gasifier. The products from both pyrolysis and gasification were thoroughly characterized. Moreover, the product yields from the individual steps, as well as from the entire process chain, are reported. It was estimated that the yields of CO and H(2) from the two-step process were at least 0.95 and 0.06 kg per kg of polypropylene, respectively, assuming that the pyrolysis liquid and wax can be combined as feedstock to an entrained flow gasifier. On an energy basis, the energy content of CO and H(2) in the produced syngas corresponded to approximately 40% of the energy content of the polypropylene raw material. This is, however, expected to be significantly improved on a larger scale where losses are proportionally smaller.