Cargando…

D-GQDs Modified Epoxy Resin Enhances the Thermal Conductivity of AlN/Epoxy Resin Thermally Conductive Composites

This article proposes a method of increasing thermal conductivity (λ) by improving the λ value of a matrix and reducing the interfacial thermal resistance between such matrix and its thermally conductive fillers. D-GQDs (graphene quantum dots modified by polyetheramine D400) with a π–π-conjugated sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Duanwei, Liu, Fusheng, Wang, Sheng, Yan, Mengxi, Hu, Xin, Xu, Mengying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659175/
https://www.ncbi.nlm.nih.gov/pubmed/34883578
http://dx.doi.org/10.3390/polym13234074
Descripción
Sumario:This article proposes a method of increasing thermal conductivity (λ) by improving the λ value of a matrix and reducing the interfacial thermal resistance between such matrix and its thermally conductive fillers. D-GQDs (graphene quantum dots modified by polyetheramine D400) with a π–π-conjugated system in the center of their molecules, and polyether branched chains that are rich in amino groups at their edges, are designed and synthesized. AlN/DG-ER (AlN/D-GQDs-Epoxy resin) thermally conductive composites are obtained using AlN as a thermally conductive and insulating filler, using D-GQDs-modified epoxy resin as a matrix. All of the thermal conductivity, electrically insulating and physical–mechanical properties of AlN/DG-ER are investigated in detail. The results show that D-GQDs linked to an epoxy resin by chemical bonds can increase the value of λ of the epoxy–resin matrix and reduce the interfacial thermal resistance between AlN and DG-ER (D-GQDs–epoxy resin). The prepared AlN/DG-ER is shown to be a good thermally conductive and insulating packaging material.