Cargando…
Preparation and Property of Bio-Polyimide/Halloysite Nanocomposite Based on 2,5-Furandicarboxylic Acid
Bio-based polyimide (PI)/halloysite nanotube (HNT) nanocomposites based on 2,5-furandicarboxylic acid were prepared by in situ polymerization. The pristine HNTs were modified by tetraethoxysilane (TEOS) and 4,4′-oxybisbenzenamine (ODA). The bio-based PI/HNT nanocomposite film exhibited lower moistur...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659181/ https://www.ncbi.nlm.nih.gov/pubmed/34883561 http://dx.doi.org/10.3390/polym13234057 |
Sumario: | Bio-based polyimide (PI)/halloysite nanotube (HNT) nanocomposites based on 2,5-furandicarboxylic acid were prepared by in situ polymerization. The pristine HNTs were modified by tetraethoxysilane (TEOS) and 4,4′-oxybisbenzenamine (ODA). The bio-based PI/HNT nanocomposite film exhibited lower moisture absorption than pure bio-based polyimide, showing that the water resistance of the bio-based polyimide film was improved. The thermal stability and glass transition temperature (Tg) of PI/HNTs nanocomposites were improved with the addition of modified HNTs. Both the tensile strength and Young’s modulus of bio-based PI/HNTs nanocomposite films were enhanced. A 37.7% increase in tensile strength and a 75.1% increase in Young’s modulus of bio-based PI/HNTs nanocomposite films, with 1 wt% of the modified HNTs, were achieved. The result confirmed that 2,5-furandicarboxylic acid could replace the oil-based material effectively, thus reducing pollution and protecting the environment. Finally, a preparation mechanism to prepare bio-based PI/HNTs nanocomposite is proposed. |
---|