Cargando…
Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions
This study investigated the possibility of obtaining a raphia-microorganism composite for removing lead ions from aqueous solutions using immobilized yeast cells Saccharomyces cerevisiae on Raphia farinifera fibers. The obtained biocomposite was characterized using scanning electron microscopy and F...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659271/ https://www.ncbi.nlm.nih.gov/pubmed/34885636 http://dx.doi.org/10.3390/ma14237482 |
_version_ | 1784612924987277312 |
---|---|
author | Staroń, Paweł Chwastowski, Jarosław |
author_facet | Staroń, Paweł Chwastowski, Jarosław |
author_sort | Staroń, Paweł |
collection | PubMed |
description | This study investigated the possibility of obtaining a raphia-microorganism composite for removing lead ions from aqueous solutions using immobilized yeast cells Saccharomyces cerevisiae on Raphia farinifera fibers. The obtained biocomposite was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Studies were conducted to determine the influence of contact time, initial concentration of Pb(II), and pH allowed for the selection of nonlinear equilibrium and kinetic models. The results showed that the biocomposite had a better Pb(II) removal capacity in comparison to the raphia fibers alone, and its maximum Pb(II) adsorption capacity was 94.8 mg/g. The model that best describes Pb(II) sorption was the Temkin isotherm model, while kinetic studies confirmed the chemical nature of the sorption process following the Elovich model. The obtained research results provide new information on the full use of the adsorption function of biomass and the ubiquitous microbial resources and their use in the remediation of aqueous environments contaminated with heavy metals. |
format | Online Article Text |
id | pubmed-8659271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86592712021-12-10 Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions Staroń, Paweł Chwastowski, Jarosław Materials (Basel) Article This study investigated the possibility of obtaining a raphia-microorganism composite for removing lead ions from aqueous solutions using immobilized yeast cells Saccharomyces cerevisiae on Raphia farinifera fibers. The obtained biocomposite was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Studies were conducted to determine the influence of contact time, initial concentration of Pb(II), and pH allowed for the selection of nonlinear equilibrium and kinetic models. The results showed that the biocomposite had a better Pb(II) removal capacity in comparison to the raphia fibers alone, and its maximum Pb(II) adsorption capacity was 94.8 mg/g. The model that best describes Pb(II) sorption was the Temkin isotherm model, while kinetic studies confirmed the chemical nature of the sorption process following the Elovich model. The obtained research results provide new information on the full use of the adsorption function of biomass and the ubiquitous microbial resources and their use in the remediation of aqueous environments contaminated with heavy metals. MDPI 2021-12-06 /pmc/articles/PMC8659271/ /pubmed/34885636 http://dx.doi.org/10.3390/ma14237482 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Staroń, Paweł Chwastowski, Jarosław Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions |
title | Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions |
title_full | Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions |
title_fullStr | Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions |
title_full_unstemmed | Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions |
title_short | Raphia-Microorganism Composite Biosorbent for Lead Ion Removal from Aqueous Solutions |
title_sort | raphia-microorganism composite biosorbent for lead ion removal from aqueous solutions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659271/ https://www.ncbi.nlm.nih.gov/pubmed/34885636 http://dx.doi.org/10.3390/ma14237482 |
work_keys_str_mv | AT staronpaweł raphiamicroorganismcompositebiosorbentforleadionremovalfromaqueoussolutions AT chwastowskijarosław raphiamicroorganismcompositebiosorbentforleadionremovalfromaqueoussolutions |