Cargando…
Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites
Cardiovascular Diseases (CVDs) such as atherosclerosis, where inflammation occurs in the blood vessel wall, are one of the major causes of death worldwide. Mesenchymal Stem Cells (MSCs)-based treatment coupled with nanoparticles is considered to be a potential and promising therapeutic strategy for...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659436/ https://www.ncbi.nlm.nih.gov/pubmed/34883774 http://dx.doi.org/10.3390/polym13234265 |
_version_ | 1784612961739866112 |
---|---|
author | Hung, Huey-Shan Yang, Yi-Chin Kao, Wei-Chien Yeh, Chun-An Chang, Kai-Bo Tang, Cheng-Ming Hsieh, Hsien-Hsu Lee, Hsu-Tung |
author_facet | Hung, Huey-Shan Yang, Yi-Chin Kao, Wei-Chien Yeh, Chun-An Chang, Kai-Bo Tang, Cheng-Ming Hsieh, Hsien-Hsu Lee, Hsu-Tung |
author_sort | Hung, Huey-Shan |
collection | PubMed |
description | Cardiovascular Diseases (CVDs) such as atherosclerosis, where inflammation occurs in the blood vessel wall, are one of the major causes of death worldwide. Mesenchymal Stem Cells (MSCs)-based treatment coupled with nanoparticles is considered to be a potential and promising therapeutic strategy for vascular regeneration. Thus, angiogenesis enhanced by nanoparticles is of critical concern. In this study, Polyethylene Glycol (PEG) incorporated with 43.5 ppm of gold (Au) nanoparticles was prepared for the evaluation of biological effects through in vitro and in vivo assessments. The physicochemical properties of PEG and PEG–Au nanocomposites were first characterized by UV-Vis spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFMs). Furthermore, the reactive oxygen species scavenger ability as well as the hydrophilic property of the nanocomposites were also investigated. Afterwards, the biocompatibility and biological functions of the PEG–Au nanocomposites were evaluated through in vitro assays. The thin coating of PEG containing 43.5 ppm of Au nanoparticles induced the least platelet and monocyte activation. Additionally, the cell behavior of MSCs on PEG–Au 43.5 ppm coating demonstrated better cell proliferation, low ROS generation, and enhancement of cell migration, as well as protein expression of the endothelialization marker CD31, which is associated with angiogenesis capacity. Furthermore, anti-inflammatory and endothelial differentiation ability were both evaluated through in vivo assessments. The evidence demonstrated that PEG–Au 43.5 ppm implantation inhibited capsule formation and facilitated the expression of CD31 in rat models. TUNEL assay also indicated that PEG–Au nanocomposites would not induce significant cell apoptosis. The above results elucidate that the surface modification of PEG–Au nanomaterials may enable them to serve as efficient tools for vascular regeneration grafts. |
format | Online Article Text |
id | pubmed-8659436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86594362021-12-10 Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites Hung, Huey-Shan Yang, Yi-Chin Kao, Wei-Chien Yeh, Chun-An Chang, Kai-Bo Tang, Cheng-Ming Hsieh, Hsien-Hsu Lee, Hsu-Tung Polymers (Basel) Article Cardiovascular Diseases (CVDs) such as atherosclerosis, where inflammation occurs in the blood vessel wall, are one of the major causes of death worldwide. Mesenchymal Stem Cells (MSCs)-based treatment coupled with nanoparticles is considered to be a potential and promising therapeutic strategy for vascular regeneration. Thus, angiogenesis enhanced by nanoparticles is of critical concern. In this study, Polyethylene Glycol (PEG) incorporated with 43.5 ppm of gold (Au) nanoparticles was prepared for the evaluation of biological effects through in vitro and in vivo assessments. The physicochemical properties of PEG and PEG–Au nanocomposites were first characterized by UV-Vis spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFMs). Furthermore, the reactive oxygen species scavenger ability as well as the hydrophilic property of the nanocomposites were also investigated. Afterwards, the biocompatibility and biological functions of the PEG–Au nanocomposites were evaluated through in vitro assays. The thin coating of PEG containing 43.5 ppm of Au nanoparticles induced the least platelet and monocyte activation. Additionally, the cell behavior of MSCs on PEG–Au 43.5 ppm coating demonstrated better cell proliferation, low ROS generation, and enhancement of cell migration, as well as protein expression of the endothelialization marker CD31, which is associated with angiogenesis capacity. Furthermore, anti-inflammatory and endothelial differentiation ability were both evaluated through in vivo assessments. The evidence demonstrated that PEG–Au 43.5 ppm implantation inhibited capsule formation and facilitated the expression of CD31 in rat models. TUNEL assay also indicated that PEG–Au nanocomposites would not induce significant cell apoptosis. The above results elucidate that the surface modification of PEG–Au nanomaterials may enable them to serve as efficient tools for vascular regeneration grafts. MDPI 2021-12-06 /pmc/articles/PMC8659436/ /pubmed/34883774 http://dx.doi.org/10.3390/polym13234265 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hung, Huey-Shan Yang, Yi-Chin Kao, Wei-Chien Yeh, Chun-An Chang, Kai-Bo Tang, Cheng-Ming Hsieh, Hsien-Hsu Lee, Hsu-Tung Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites |
title | Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites |
title_full | Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites |
title_fullStr | Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites |
title_full_unstemmed | Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites |
title_short | Evaluation of the Biocompatibility and Endothelial Differentiation Capacity of Mesenchymal Stem Cells by Polyethylene Glycol Nanogold Composites |
title_sort | evaluation of the biocompatibility and endothelial differentiation capacity of mesenchymal stem cells by polyethylene glycol nanogold composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659436/ https://www.ncbi.nlm.nih.gov/pubmed/34883774 http://dx.doi.org/10.3390/polym13234265 |
work_keys_str_mv | AT hunghueyshan evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites AT yangyichin evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites AT kaoweichien evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites AT yehchunan evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites AT changkaibo evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites AT tangchengming evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites AT hsiehhsienhsu evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites AT leehsutung evaluationofthebiocompatibilityandendothelialdifferentiationcapacityofmesenchymalstemcellsbypolyethyleneglycolnanogoldcomposites |