Cargando…
A Novel Permutation Entropy-Based EEG Channel Selection for Improving Epileptic Seizure Prediction
The key research aspects of detecting and predicting epileptic seizures using electroencephalography (EEG) signals are feature extraction and classification. This paper aims to develop a highly effective and accurate algorithm for seizure prediction. Efficient channel selection could be one of the s...
Autores principales: | Ra, Jee S., Li, Tianning, Li, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659444/ https://www.ncbi.nlm.nih.gov/pubmed/34883976 http://dx.doi.org/10.3390/s21237972 |
Ejemplares similares
-
Epileptic Seizure Prediction Based on Permutation Entropy
por: Yang, Yanli, et al.
Publicado: (2018) -
Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures
por: Lo Giudice, Michele, et al.
Publicado: (2022) -
Detection of epileptic seizure based on entropy analysis of short-term EEG
por: Li, Peng, et al.
Publicado: (2018) -
A novel spectral entropy-based index for assessing the depth of anaesthesia
por: Ra, Jee Sook, et al.
Publicado: (2021) -
EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020)