Cargando…

Optimization of Injection-Molding Process for Thin-Walled Polypropylene Part Using Artificial Neural Network and Taguchi Techniques

Plastics are commonly used engineering materials, and the injection-molding process is well known as an efficient and economic manufacturing technique for producing plastic parts with various shapes and complex geometries. However, there are certain manufacturing defects related to the injection-mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Moayyedian, Mehdi, Dinc, Ali, Mamedov, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659463/
https://www.ncbi.nlm.nih.gov/pubmed/34883661
http://dx.doi.org/10.3390/polym13234158
Descripción
Sumario:Plastics are commonly used engineering materials, and the injection-molding process is well known as an efficient and economic manufacturing technique for producing plastic parts with various shapes and complex geometries. However, there are certain manufacturing defects related to the injection-molding process, such as short shot, shrinkage, and warpage. This research aims to find optimum process parameters for high-quality end products with minimum defect possibility. The Artificial Neural Network and Taguchi Techniques are used to find a set of optimal process parameters. The Analytic Hierarchy Process is used to calculate the weight of each defect in the proposed thin-walled part. The Finite Element Analysis (FEA) using SolidWorks plastics is used to simulate the injection-molding process for polypropylene parts and validate the proposed optimal set of process parameters. Results showed the best end-product quality was achieved at a filling time of 1 s, cooling time of 3 s, pressure-holding time of 3 s, and melt temperature of 230 °C. The end-product quality was mostly influenced by filling time, followed by the pressure-holding time. It was found that the margin of error for the proposed optimization methods was 1.5%, resulting from any uncontrollable parameters affecting the injection-molding process.