Cargando…
A Study on the Performance of a Silicon Photodiode Sensor for a Particle Dosimeter and Spectrometer
A lunar vehicle radiation dosimeter (LVRAD) has been proposed for studying the radiation environment on the lunar surface and evaluating its impact on human health. The LVRAD payload comprises four systems: a particle dosimeter and spectrometer (PDS), a tissue-equivalent dosimeter, a fast neutron sp...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659465/ https://www.ncbi.nlm.nih.gov/pubmed/34884033 http://dx.doi.org/10.3390/s21238029 |
Sumario: | A lunar vehicle radiation dosimeter (LVRAD) has been proposed for studying the radiation environment on the lunar surface and evaluating its impact on human health. The LVRAD payload comprises four systems: a particle dosimeter and spectrometer (PDS), a tissue-equivalent dosimeter, a fast neutron spectrometer, and an epithermal neutron spectrometer. A silicon photodiode sensor with compact readout electronics was proposed for the PDS. The PDS system aims to measure protons with 10–100 MeV of energy and assess dose in the lunar space environment. The manufactured silicon photodiode sensor has an effective area of 20 mm × 20 mm and thickness of 650 [Formula: see text] m; the electronics consist of an amplifier, analog pulse processor, and a 12-bit analog-to-digital converter for signal readout. We studied the responses of silicon sensors which were manufactured with self-made electronics to gamma rays with a wide range of energies and proton beams. |
---|