Cargando…
Improving Automatic Renal Segmentation in Clinically Normal and Abnormal Paediatric DCE-MRI via Contrast Maximisation and Convolutional Networks for Computing Markers of Kidney Function
There is a growing demand for fast, accurate computation of clinical markers to improve renal function and anatomy assessment with a single study. However, conventional techniques have limitations leading to overestimations of kidney function or failure to provide sufficient spatial resolution to ta...
Autores principales: | Asaturyan, Hykoush, Villarini, Barbara, Sarao, Karen, Chow, Jeanne S., Afacan, Onur, Kurugol, Sila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659486/ https://www.ncbi.nlm.nih.gov/pubmed/34883946 http://dx.doi.org/10.3390/s21237942 |
Ejemplares similares
-
A Framework for Automatic Morphological Feature Extraction and Analysis of Abdominal Organs in MRI Volumes
por: Asaturyan, Hykoush, et al.
Publicado: (2019) -
Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI
por: Jiao, Han, et al.
Publicado: (2020) -
Automatic breast lesion segmentation in phase preserved DCE-MRIs
por: Pandey, Dinesh, et al.
Publicado: (2022) -
Improving the accuracy of fatty liver index to reflect liver fat content with predictive regression modelling
por: Asaturyan, Hykoush A., et al.
Publicado: (2022) -
Automatic Detection and Quantitative DCE-MRI Scoring of Prostate Cancer Aggressiveness
por: Parra, Nestor Andres, et al.
Publicado: (2017)