Cargando…

Prediction of Cow Calving in Extensive Livestock Using a New Neck-Mounted Sensorized Wearable Device: A Pilot Study

In this study, new low-cost neck-mounted sensorized wearable device is presented to help farmers detect the onset of calving in extensive livestock farming by continuously monitoring cow data. The device incorporates three sensors: an inertial measurement unit (IMU), a global navigation satellite sy...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Sánchez, Carlos, Sánchez-Brizuela, Guillermo, Cisnal, Ana, Fraile, Juan-Carlos, Pérez-Turiel, Javier, de la Fuente-López, Eusebio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659500/
https://www.ncbi.nlm.nih.gov/pubmed/34884068
http://dx.doi.org/10.3390/s21238060
Descripción
Sumario:In this study, new low-cost neck-mounted sensorized wearable device is presented to help farmers detect the onset of calving in extensive livestock farming by continuously monitoring cow data. The device incorporates three sensors: an inertial measurement unit (IMU), a global navigation satellite system (GNSS) receiver, and a thermometer. The hypothesis of this study was that onset calving is detectable through the analyses of the number of transitions between lying and standing of the animal (lying bouts). A new algorithm was developed to detect calving, analysing the frequency and duration of lying and standing postures. An important novelty is that the proposed algorithm has been designed with the aim of being executed in the embedded microcontroller housed in the cow’s collar and, therefore, it requires minimal computational resources while allowing for real time data processing. In this preliminary study, six cows were monitored during different stages of gestation (before, during, and after calving), both with the sensorized wearable device and by human observers. It was carried out on an extensive livestock farm in Salamanca (Spain), during the period from August 2020 to July 2021. The preliminary results obtained indicate that lying-standing animal states and transitions may be useful to predict calving. Further research, with data obtained in future calving of cows, is required to refine the algorithm.