Cargando…
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
Data-driven forecasts of air quality have recently achieved more accurate short-term predictions. However, despite their success, most of the current data-driven solutions lack proper quantifications of model uncertainty that communicate how much to trust the forecasts. Recently, several practical t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659533/ https://www.ncbi.nlm.nih.gov/pubmed/34884011 http://dx.doi.org/10.3390/s21238009 |