Cargando…
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
Data-driven forecasts of air quality have recently achieved more accurate short-term predictions. However, despite their success, most of the current data-driven solutions lack proper quantifications of model uncertainty that communicate how much to trust the forecasts. Recently, several practical t...
Autores principales: | Murad, Abdulmajid, Kraemer, Frank Alexander, Bach, Kerstin, Taylor, Gavin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659533/ https://www.ncbi.nlm.nih.gov/pubmed/34884011 http://dx.doi.org/10.3390/s21238009 |
Ejemplares similares
-
Seasonal Arctic sea ice forecasting with probabilistic deep learning
por: Andersson, Tom R., et al.
Publicado: (2021) -
Probabilistic Bayesian
Deep Learning Approach for
Online Forecasting of Fed-Batch Fermentation
por: Wang, Tao, et al.
Publicado: (2023) -
Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts
por: Chowell, Gerardo
Publicado: (2017) -
Uncertainty in Risk Assessment: The Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods
por: Flage, Roger
Publicado: (2014) -
Probabilistic Deep Learning
por: Sick, Beate, et al.
Publicado: (2020)