Cargando…
Multiclass Image Classification Using GANs and CNN Based on Holes Drilled in Laminated Chipboard
The multiclass prediction approach to the problem of recognizing the state of the drill by classifying images of drilled holes into three classes is presented. Expert judgement was made on the basis of the quality of the hole, by dividing the collected photographs into the classes: “very fine,” “acc...
Autores principales: | Wieczorek, Grzegorz, Chlebus, Marcin, Gajda, Janusz, Chyrowicz, Katarzyna, Kontna, Kamila, Korycki, Michał, Jegorowa, Albina, Kruk, Michał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659545/ https://www.ncbi.nlm.nih.gov/pubmed/34884080 http://dx.doi.org/10.3390/s21238077 |
Ejemplares similares
-
Advanced Feature Extraction Methods from Images of Drillings in Melamine Faced Chipboard for Automatic Diagnosis of Drill Wear
por: Antoniuk, Izabella, et al.
Publicado: (2023) -
Application of Siamese Networks to the Recognition of the Drill Wear State Based on Images of Drilled Holes
por: Kurek, Jarosław, et al.
Publicado: (2020) -
Application of Machine Learning Algorithms for Tool Condition Monitoring in Milling Chipboard Process
por: Przybyś-Małaczek, Agata, et al.
Publicado: (2023) -
Effect of Nitrogen Ion Implantation on the Tool Life Used in Particleboard CNC Drilling
por: Wilkowski, Jacek, et al.
Publicado: (2022) -
Effects of a Chipboard Structure on Its Physical and Mechanical Properties
por: Mirski, Radosław, et al.
Publicado: (2019)