Cargando…

Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks

The aim of the present study was to predict the kinematics of the knee and the ankle joints during a squat training task of different intensities. Lower limb surface electromyographic (sEMG) signals and the 3-D kinematics of lower extremity joints were recorded from 19 body builders during squat tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Zangene, Alireza Rezaie, Abbasi, Ali, Nazarpour, Kianoush
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659564/
https://www.ncbi.nlm.nih.gov/pubmed/34883777
http://dx.doi.org/10.3390/s21237773
Descripción
Sumario:The aim of the present study was to predict the kinematics of the knee and the ankle joints during a squat training task of different intensities. Lower limb surface electromyographic (sEMG) signals and the 3-D kinematics of lower extremity joints were recorded from 19 body builders during squat training at four loading conditions. A long-short term memory (LSTM) was used to estimate the kinematics of the knee and the ankle joints. The accuracy, in terms root-mean-square error (RMSE) metric, of the LSTM network for the knee and ankle joints were 6.774 ± 1.197 and 6.961 ± 1.200, respectively. The LSTM network with inputs processed by cross-correlation (CC) method showed 3.8% and 4.7% better performance in the knee and ankle joints, respectively, compared to when the CC method was not used. Our results showed that in the prediction, regardless of the intensity of movement and inter-subject variability, an off-the-shelf LSTM decoder outperforms conventional fully connected neural networks.