Cargando…
Mental Stress Classification Based on a Support Vector Machine and Naive Bayes Using Electrocardiogram Signals
Examining mental health is crucial for preventing mental illnesses such as depression. This study presents a method for classifying electrocardiogram (ECG) data into four emotional states according to the stress levels using one-against-all and naive Bayes algorithms of a support vector machine. The...
Autores principales: | Kang, Mingu, Shin, Siho, Zhang, Gengjia, Jung, Jaehyo, Kim, Youn Tae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659646/ https://www.ncbi.nlm.nih.gov/pubmed/34883920 http://dx.doi.org/10.3390/s21237916 |
Ejemplares similares
-
Classification of Mental Stress Using CNN-LSTM Algorithms with Electrocardiogram Signals
por: Kang, Mingu, et al.
Publicado: (2021) -
Fully stretchable textile-based triboelectric nanogenerators with crepe-paper-induced surface microstructures
por: Kim, Da Eun, et al.
Publicado: (2023) -
Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer
por: Jung, Jaehyo, et al.
Publicado: (2017) -
Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography
por: Golpour, Parastoo, et al.
Publicado: (2020) -
Feature selection using a one dimensional naïve Bayes’ classifier increases the accuracy of support vector machine classification of CDR3 repertoires
por: Cinelli, Mattia, et al.
Publicado: (2017)