Cargando…
Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images
Deep neural networks (DNNs) for object classification have been argued to provide the most promising model of the visual system, accompanied by claims that they have attained or even surpassed human-level performance. Here, we evaluated whether DNNs provide a viable model of human vision when tested...
Autores principales: | Jang, Hojin, McCormack, Devin, Tong, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659651/ https://www.ncbi.nlm.nih.gov/pubmed/34882676 http://dx.doi.org/10.1371/journal.pbio.3001418 |
Ejemplares similares
-
Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks
por: Jang, Hojin, et al.
Publicado: (2023) -
Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing
por: Jang, Hojin, et al.
Publicado: (2021) -
Training deep quantum neural networks
por: Beer, Kerstin, et al.
Publicado: (2020) -
Deep Vision: Learning to Identify Renal Disease With Neural Networks
por: Pavinkurve, Nishanth P., et al.
Publicado: (2019) -
Deep Neural Network Model of Hearing-Impaired Speech-in-Noise Perception
por: Haro, Stephanie, et al.
Publicado: (2020)