Cargando…
Self-Supervised Denoising Image Filter Based on Recursive Deep Neural Network Structure
The purpose of this paper is to propose a novel noise removal method based on deep neural networks that can remove various types of noise without paired noisy and clean data. Because this type of filter generally has relatively poor performance, the proposed noise-to-blur-estimated clean (N2BeC) mod...
Autores principales: | Kang, Changhee, Kang, Sang-ug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659654/ https://www.ncbi.nlm.nih.gov/pubmed/34883829 http://dx.doi.org/10.3390/s21237827 |
Ejemplares similares
-
Live 4D-OCT denoising with self-supervised deep learning
por: Nienhaus, Jonas, et al.
Publicado: (2023) -
SPIDEN: deep Spiking Neural Networks for efficient image denoising
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
Deep feature loss to denoise OCT images using deep neural networks
por: Mehdizadeh, Maryam, et al.
Publicado: (2021) -
Fast, efficient, and accurate neuro-imaging denoising via supervised deep learning
por: Chaudhary, Shivesh, et al.
Publicado: (2022) -
Joint Demosaicing and Denoising Based on a Variational Deep Image Prior Neural Network
por: Park, Yunjin, et al.
Publicado: (2020)