Cargando…

Energy-Efficient Optimal Power Allocation for SWIPT Based IoT-Enabled Smart Meter

This paper presents an internet of things (IoTs) enabled smart meter with energy-efficient simultaneous wireless information and power transfer (SWIPT) for the wireless powered smart grid communication network. The SWIPT technique with energy harvesting (EH) is an attractive solution for prolonging...

Descripción completa

Detalles Bibliográficos
Autores principales: Masood, Zaki, Ardiansyah, Choi, Yonghoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659662/
https://www.ncbi.nlm.nih.gov/pubmed/34883858
http://dx.doi.org/10.3390/s21237857
Descripción
Sumario:This paper presents an internet of things (IoTs) enabled smart meter with energy-efficient simultaneous wireless information and power transfer (SWIPT) for the wireless powered smart grid communication network. The SWIPT technique with energy harvesting (EH) is an attractive solution for prolonging the battery life of ultra-low power devices. The motivation for energy efficiency (EE) maximization is to increase the efficient use of energy and improve the battery life of the IoT devices embedded in smart meter. In the system model, the smart meter is equipped with an IoT device, which implements the SWIPT technique in power splitting (PS) mode. This paper aims at the EE maximization and considers the orthogonal frequency division multiplexing distributed antenna system (OFDM-DAS) for the smart meters in the downlink with IoT enabled PS-SWIPT system. The EE maximization is a nonlinear and non-convex optimization problem. We propose an optimal power allocation algorithm for the non-convex EE maximization problem by the Lagrange method and proportional fairness to optimal power allocation among smart meters. The proposed algorithm shows a clear advantage, where total power consumption is considered in the EE maximization with energy constraints. Furthermore, EE vs. spectral efficiency (SE) tradeoff is investigated. The results of our algorithm reveal that EE improves with EH requirements.