Cargando…
Bayesian calibration of a stochastic, multiscale agent-based model for predicting in vitro tumor growth
Hybrid multiscale agent-based models (ABMs) are unique in their ability to simulate individual cell interactions and microenvironmental dynamics. Unfortunately, the high computational cost of modeling individual cells, the inherent stochasticity of cell dynamics, and numerous model parameters are fu...
Autores principales: | Lima, Ernesto A. B. F., Faghihi, Danial, Philley, Russell, Yang, Jianchen, Virostko, John, Phillips, Caleb M., Yankeelov, Thomas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659698/ https://www.ncbi.nlm.nih.gov/pubmed/34843457 http://dx.doi.org/10.1371/journal.pcbi.1008845 |
Ejemplares similares
-
Optimal Control Theory for Personalized Therapeutic Regimens in Oncology: Background, History, Challenges, and Opportunities
por: Jarrett, Angela M., et al.
Publicado: (2020) -
Towards integration of time-resolved confocal microscopy of a 3D in vitro microfluidic platform with a hybrid multiscale model of tumor angiogenesis
por: Phillips, Caleb M., et al.
Publicado: (2023) -
An experimental-mathematical approach to predict tumor cell growth as a function of glucose availability in breast cancer cell lines
por: Yang, Jianchen, et al.
Publicado: (2021) -
Comparing mechanism-based and machine learning models for predicting the effects of glucose accessibility on tumor cell proliferation
por: Yang, Jianchen, et al.
Publicado: (2023) -
Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models
por: Burr, Tom, et al.
Publicado: (2013)