Cargando…

A Coherent on Receive X-Band Marine Radar for Ocean Observations

Marine radars are increasingly popular for monitoring meteorological and oceanographic parameters such as ocean surface wind, waves and currents as well as bathymetry and shorelines. Within this paper a coherent on receive marine radar is introduced, which is based on an incoherent off the shelf pul...

Descripción completa

Detalles Bibliográficos
Autores principales: Horstmann, Jochen, Bödewadt, Jan, Carrasco, Ruben, Cysewski, Marius, Seemann, Jörg, Streβer, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659718/
https://www.ncbi.nlm.nih.gov/pubmed/34883833
http://dx.doi.org/10.3390/s21237828
Descripción
Sumario:Marine radars are increasingly popular for monitoring meteorological and oceanographic parameters such as ocean surface wind, waves and currents as well as bathymetry and shorelines. Within this paper a coherent on receive marine radar is introduced, which is based on an incoherent off the shelf pulsed X-band radar. The main concept of the coherentization is based on the coherent on receive principle, where the coherence is achieved by measuring the phase of the transmitted pulse from a leak in the radar circulator, which then serves as a reference phase for the transmitted pulse. The Doppler shift frequency can be computed from two consecutive pulse-pairs in the time domain or from the first moment of the Doppler spectrum inferred by means of a short time Fast Fourier Transform. From the Doppler shift frequencies, radial speed maps of the backscatter of the ocean surface are retrieved. The resulting backscatter intensity and Doppler speed maps are presented for horizontal as well as vertical polarization, and discussed with respect to meteorological and oceanographic applications.