Cargando…
Plugin Framework-Based Neuro-Symbolic Grounded Task Planning for Multi-Agent System
As the roles of robots continue to expand in general, there is an increasing demand for research on automated task planning for a multi-agent system that can independently execute tasks in a wide and dynamic environment. This study introduces a plugin framework in which multiple robots can be involv...
Autor principal: | Moon, Jiyoun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659725/ https://www.ncbi.nlm.nih.gov/pubmed/34883897 http://dx.doi.org/10.3390/s21237896 |
Ejemplares similares
-
Neuro-symbolic approaches in artificial intelligence
por: Hitzler, Pascal, et al.
Publicado: (2022) -
Compositional Symbol Grounding for Motor Patterns
por: Greco, Alberto, et al.
Publicado: (2010) -
Symbols and grounding in large language models
por: Pavlick, Ellie
Publicado: (2023) -
Neuro-symbolic representation learning on biological knowledge graphs
por: Alshahrani, Mona, et al.
Publicado: (2017) -
The Symbol Grounding Problem Revisited: A Thorough Evaluation of the ANS Mapping Account and the Proposal of an Alternative Account Based on Symbol–Symbol Associations
por: Reynvoet, Bert, et al.
Publicado: (2016)