Cargando…
Recognition of Noisy Radar Emitter Signals Using a One-Dimensional Deep Residual Shrinkage Network
Signal features can be obscured in noisy environments, resulting in low accuracy of radar emitter signal recognition based on traditional methods. To improve the ability of learning features from noisy signals, a new radar emitter signal recognition method based on one-dimensional (1D) deep residual...
Autores principales: | Zhang, Shengli, Pan, Jifei, Han, Zhenzhong, Guo, Linqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659739/ https://www.ncbi.nlm.nih.gov/pubmed/34883980 http://dx.doi.org/10.3390/s21237973 |
Ejemplares similares
-
Radar Emitter Signal Recognition Based on One-Dimensional Convolutional Neural Network with Attention Mechanism
por: Wu, Bin, et al.
Publicado: (2020) -
An End-to-End Deep Learning Approach for State Recognition of Multifunction Radars
por: Xu, Xinsong, et al.
Publicado: (2022) -
Improved Deep Residual Shrinkage Network for Intelligent Interference Recognition with Unknown Interference
por: Wu, Xiaojun, et al.
Publicado: (2023) -
Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning
por: Yang, Zhutian, et al.
Publicado: (2016) -
Radar Emitter Recognition Based on the Energy Cumulant of Short Time Fourier Transform and Reinforced Deep Belief Network
por: Wang, Xuebao, et al.
Publicado: (2018)