Cargando…
Multi-Objective Optimization of Energy Saving and Throughput in Heterogeneous Networks Using Deep Reinforcement Learning
Wireless networking using GHz or THz spectra has encouraged mobile service providers to deploy small cells to improve link quality and cell capacity using mmWave backhaul links. As green networking for less CO(2) emission is mandatory to confront global climate change, we need energy efficient netwo...
Autores principales: | Ryu, Kyungho, Kim, Wooseong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659752/ https://www.ncbi.nlm.nih.gov/pubmed/34883929 http://dx.doi.org/10.3390/s21237925 |
Ejemplares similares
-
Heterogeneous Retirement Savings Strategy Selection with Reinforcement Learning
por: Ozhamaratli, Fatih, et al.
Publicado: (2023) -
Multi-Objective Optimal Trajectory Planning for Robotic Arms Using Deep Reinforcement Learning
por: Zhang, Shaobo, et al.
Publicado: (2023) -
A Multi-Objective Approach for Optimal Energy Management in Smart Home Using the Reinforcement Learning
por: Diyan, Muhammad, et al.
Publicado: (2020) -
Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices
por: Kim, Kyungho, et al.
Publicado: (2023) -
Diffusion Dynamics of Energy Saving Practices in Large Heterogeneous Online Networks
por: Mohammadi, Neda, et al.
Publicado: (2016)