Cargando…

Extraction of Polyhydroxyalkanoates from Purple Non-Sulfur Bacteria by Non-Chlorinated Solvents

In this study, non-chlorinated solvents such as cyclohexanone (CYC) and three ionic liquids, (ILs) (1-ethyl-3-methylimidazolium dimethylphosphate, [EMIM][DMP], 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][DEP] and 1-ethyl-3-methylimidazolium methylphosphite, [EMIM][MP]) were tested to extrac...

Descripción completa

Detalles Bibliográficos
Autores principales: Filippi, Sara, Cinelli, Patrizia, Mezzetta, Andrea, Carlozzi, Pietro, Seggiani, Maurizia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659763/
https://www.ncbi.nlm.nih.gov/pubmed/34883666
http://dx.doi.org/10.3390/polym13234163
Descripción
Sumario:In this study, non-chlorinated solvents such as cyclohexanone (CYC) and three ionic liquids, (ILs) (1-ethyl-3-methylimidazolium dimethylphosphate, [EMIM][DMP], 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][DEP] and 1-ethyl-3-methylimidazolium methylphosphite, [EMIM][MP]) were tested to extract polyhydroxyalkanoates (PHAs) from the purple non-sulfur photosynthetic bacterium (PNSB) Rhodovulum sulfidophilum DSM-1374. The photosynthetic bacterium was cultured in a new generation photobioreactor with 4 L of working volume using a lactate-rich medium. The extracted PHAs were characterized using a thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, proton nuclear magnetic resonance and gel permeation chromatography. The most promising results were obtained with CYC at 125 °C with an extraction time of above 10 min, obtaining extraction yields higher than 95% and a highly pure poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) with around 2.7 mol% of hydroxylvalerate (HV). A similar yield and purity were obtained with chloroform (CHL) at 10 °C for 24 h, which was used as the referent solvent Although the three investigated ILs at 60 °C for 4 and 24 h with biomass/IL up to 1/30 (w/w) obtained PHAs strongly contaminated by cellular membrane residues, they were not completely solubilized by the investigated ILs.