Cargando…
A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer
In many regions of the world, early diagnosis of non-small cell lung cancer (NSCLC) is a major challenge due to the large population and lack of medical resources, which is difficult toeffectively address via limited physician manpower alone. Therefore, we developed a convolutional neural network (C...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659811/ https://www.ncbi.nlm.nih.gov/pubmed/34884000 http://dx.doi.org/10.3390/s21237996 |
_version_ | 1784613053337174016 |
---|---|
author | Zhan, Xiangbing Long, Huiyun Gou, Fangfang Duan, Xun Kong, Guangqian Wu, Jia |
author_facet | Zhan, Xiangbing Long, Huiyun Gou, Fangfang Duan, Xun Kong, Guangqian Wu, Jia |
author_sort | Zhan, Xiangbing |
collection | PubMed |
description | In many regions of the world, early diagnosis of non-small cell lung cancer (NSCLC) is a major challenge due to the large population and lack of medical resources, which is difficult toeffectively address via limited physician manpower alone. Therefore, we developed a convolutional neural network (CNN)-based assisted diagnosis and decision-making intelligent medical system with sensors. This system analyzes NSCLC patients’ medical records using sensors to assist staging a diagnosis and provides recommended treatment plans to physicians. To address the problem of unbalanced case samples across pathological stages, we used transfer learning and dynamic sampling techniques to reconstruct and iteratively train the model to improve the accuracy of the prediction system. In this paper, all data for training and testing the system were obtained from the medical records of 2,789,675 patients with NSCLC, which were recorded in three hospitals in China over a five-year period. When the number of case samples reached 8000, the system achieved an accuracy rate of 0.84, which is already close to that of the doctors (accuracy: 0.86). The experimental results proved that the system can quickly and accurately analyze patient data and provide decision information support for physicians. |
format | Online Article Text |
id | pubmed-8659811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86598112021-12-10 A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer Zhan, Xiangbing Long, Huiyun Gou, Fangfang Duan, Xun Kong, Guangqian Wu, Jia Sensors (Basel) Article In many regions of the world, early diagnosis of non-small cell lung cancer (NSCLC) is a major challenge due to the large population and lack of medical resources, which is difficult toeffectively address via limited physician manpower alone. Therefore, we developed a convolutional neural network (CNN)-based assisted diagnosis and decision-making intelligent medical system with sensors. This system analyzes NSCLC patients’ medical records using sensors to assist staging a diagnosis and provides recommended treatment plans to physicians. To address the problem of unbalanced case samples across pathological stages, we used transfer learning and dynamic sampling techniques to reconstruct and iteratively train the model to improve the accuracy of the prediction system. In this paper, all data for training and testing the system were obtained from the medical records of 2,789,675 patients with NSCLC, which were recorded in three hospitals in China over a five-year period. When the number of case samples reached 8000, the system achieved an accuracy rate of 0.84, which is already close to that of the doctors (accuracy: 0.86). The experimental results proved that the system can quickly and accurately analyze patient data and provide decision information support for physicians. MDPI 2021-11-30 /pmc/articles/PMC8659811/ /pubmed/34884000 http://dx.doi.org/10.3390/s21237996 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhan, Xiangbing Long, Huiyun Gou, Fangfang Duan, Xun Kong, Guangqian Wu, Jia A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer |
title | A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer |
title_full | A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer |
title_fullStr | A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer |
title_full_unstemmed | A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer |
title_short | A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer |
title_sort | convolutional neural network-based intelligent medical system with sensors for assistive diagnosis and decision-making in non-small cell lung cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659811/ https://www.ncbi.nlm.nih.gov/pubmed/34884000 http://dx.doi.org/10.3390/s21237996 |
work_keys_str_mv | AT zhanxiangbing aconvolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT longhuiyun aconvolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT goufangfang aconvolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT duanxun aconvolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT kongguangqian aconvolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT wujia aconvolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT zhanxiangbing convolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT longhuiyun convolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT goufangfang convolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT duanxun convolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT kongguangqian convolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer AT wujia convolutionalneuralnetworkbasedintelligentmedicalsystemwithsensorsforassistivediagnosisanddecisionmakinginnonsmallcelllungcancer |