Cargando…
Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study
Recent developments in cloud computing and the Internet of Things have enabled smart environments, in terms of both monitoring and actuation. Unfortunately, this often results in unsustainable cloud-based solutions, whereby, in the interest of simplicity, a wealth of raw (unprocessed) data are pushe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659818/ https://www.ncbi.nlm.nih.gov/pubmed/34883778 http://dx.doi.org/10.3390/s21237774 |
_version_ | 1784613054978195456 |
---|---|
author | Erhan, Laura Di Mauro, Mario Anjum, Ashiq Bagdasar, Ovidiu Song, Wei Liotta, Antonio |
author_facet | Erhan, Laura Di Mauro, Mario Anjum, Ashiq Bagdasar, Ovidiu Song, Wei Liotta, Antonio |
author_sort | Erhan, Laura |
collection | PubMed |
description | Recent developments in cloud computing and the Internet of Things have enabled smart environments, in terms of both monitoring and actuation. Unfortunately, this often results in unsustainable cloud-based solutions, whereby, in the interest of simplicity, a wealth of raw (unprocessed) data are pushed from sensor nodes to the cloud. Herein, we advocate the use of machine learning at sensor nodes to perform essential data-cleaning operations, to avoid the transmission of corrupted (often unusable) data to the cloud. Starting from a public pollution dataset, we investigate how two machine learning techniques (kNN and missForest) may be embedded on Raspberry Pi to perform data imputation, without impacting the data collection process. Our experimental results demonstrate the accuracy and computational efficiency of edge-learning methods for filling in missing data values in corrupted data series. We find that kNN and missForest correctly impute up to 40% of randomly distributed missing values, with a density distribution of values that is indistinguishable from the benchmark. We also show a trade-off analysis for the case of bursty missing values, with recoverable blocks of up to 100 samples. Computation times are shorter than sampling periods, allowing for data imputation at the edge in a timely manner. |
format | Online Article Text |
id | pubmed-8659818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86598182021-12-10 Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study Erhan, Laura Di Mauro, Mario Anjum, Ashiq Bagdasar, Ovidiu Song, Wei Liotta, Antonio Sensors (Basel) Article Recent developments in cloud computing and the Internet of Things have enabled smart environments, in terms of both monitoring and actuation. Unfortunately, this often results in unsustainable cloud-based solutions, whereby, in the interest of simplicity, a wealth of raw (unprocessed) data are pushed from sensor nodes to the cloud. Herein, we advocate the use of machine learning at sensor nodes to perform essential data-cleaning operations, to avoid the transmission of corrupted (often unusable) data to the cloud. Starting from a public pollution dataset, we investigate how two machine learning techniques (kNN and missForest) may be embedded on Raspberry Pi to perform data imputation, without impacting the data collection process. Our experimental results demonstrate the accuracy and computational efficiency of edge-learning methods for filling in missing data values in corrupted data series. We find that kNN and missForest correctly impute up to 40% of randomly distributed missing values, with a density distribution of values that is indistinguishable from the benchmark. We also show a trade-off analysis for the case of bursty missing values, with recoverable blocks of up to 100 samples. Computation times are shorter than sampling periods, allowing for data imputation at the edge in a timely manner. MDPI 2021-11-23 /pmc/articles/PMC8659818/ /pubmed/34883778 http://dx.doi.org/10.3390/s21237774 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Erhan, Laura Di Mauro, Mario Anjum, Ashiq Bagdasar, Ovidiu Song, Wei Liotta, Antonio Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study |
title | Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study |
title_full | Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study |
title_fullStr | Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study |
title_full_unstemmed | Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study |
title_short | Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study |
title_sort | embedded data imputation for environmental intelligent sensing: a case study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659818/ https://www.ncbi.nlm.nih.gov/pubmed/34883778 http://dx.doi.org/10.3390/s21237774 |
work_keys_str_mv | AT erhanlaura embeddeddataimputationforenvironmentalintelligentsensingacasestudy AT dimauromario embeddeddataimputationforenvironmentalintelligentsensingacasestudy AT anjumashiq embeddeddataimputationforenvironmentalintelligentsensingacasestudy AT bagdasarovidiu embeddeddataimputationforenvironmentalintelligentsensingacasestudy AT songwei embeddeddataimputationforenvironmentalintelligentsensingacasestudy AT liottaantonio embeddeddataimputationforenvironmentalintelligentsensingacasestudy |