Cargando…

Underwater Target Signal Classification Using the Hybrid Routing Neural Network

In signal analysis and processing, underwater target recognition (UTR) is one of the most important technologies. Simply and quickly identify target types using conventional methods in underwater acoustic conditions is quite a challenging task. The problem can be conveniently handled by a deep learn...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Xiao, Zhang, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659832/
https://www.ncbi.nlm.nih.gov/pubmed/34883803
http://dx.doi.org/10.3390/s21237799
Descripción
Sumario:In signal analysis and processing, underwater target recognition (UTR) is one of the most important technologies. Simply and quickly identify target types using conventional methods in underwater acoustic conditions is quite a challenging task. The problem can be conveniently handled by a deep learning network (DLN), which yields better classification results than conventional methods. In this paper, a novel deep learning method with a hybrid routing network is considered, which can abstract the features of time-domain signals. The used network comprises multiple routing structures and several options for the auxiliary branch, which promotes impressive effects as a result of exchanging the learned features of different branches. The experiment shows that the used network possesses more advantages in the underwater signal classification task.