Cargando…
Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach
Since the mature green tomatoes have color similar to branches and leaves, some are shaded by branches and leaves, and overlapped by other tomatoes, the accurate detection and location of these tomatoes is rather difficult. This paper proposes to use the Mask R-CNN algorithm for the detection and se...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659851/ https://www.ncbi.nlm.nih.gov/pubmed/34883843 http://dx.doi.org/10.3390/s21237842 |
_version_ | 1784613062479708160 |
---|---|
author | Zu, Linlu Zhao, Yanping Liu, Jiuqin Su, Fei Zhang, Yan Liu, Pingzeng |
author_facet | Zu, Linlu Zhao, Yanping Liu, Jiuqin Su, Fei Zhang, Yan Liu, Pingzeng |
author_sort | Zu, Linlu |
collection | PubMed |
description | Since the mature green tomatoes have color similar to branches and leaves, some are shaded by branches and leaves, and overlapped by other tomatoes, the accurate detection and location of these tomatoes is rather difficult. This paper proposes to use the Mask R-CNN algorithm for the detection and segmentation of mature green tomatoes. A mobile robot is designed to collect images round-the-clock and with different conditions in the whole greenhouse, thus, to make sure the captured dataset are not only objects with the interest of users. After the training process, RestNet50-FPN is selected as the backbone network. Then, the feature map is trained through the region proposal network to generate the region of interest (ROI), and the ROIAlign bilinear interpolation is used to calculate the target region, such that the corresponding region in the feature map is pooled to a fixed size based on the position coordinates of the preselection box. Finally, the detection and segmentation of mature green tomatoes is realized by the parallel actions of ROI target categories, bounding box regression and mask. When the Intersection over Union is equal to 0.5, the performance of the trained model is the best. The experimental results show that the F1-Score of bounding box and mask region all achieve 92.0%. The image acquisition processes are fully unobservable, without any user preselection, which are a highly heterogenic mix, the selected Mask R-CNN algorithm could also accurately detect mature green tomatoes. The performance of this proposed model in a real greenhouse harvesting environment is also evaluated, thus facilitating the direct application in a tomato harvesting robot. |
format | Online Article Text |
id | pubmed-8659851 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86598512021-12-10 Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach Zu, Linlu Zhao, Yanping Liu, Jiuqin Su, Fei Zhang, Yan Liu, Pingzeng Sensors (Basel) Communication Since the mature green tomatoes have color similar to branches and leaves, some are shaded by branches and leaves, and overlapped by other tomatoes, the accurate detection and location of these tomatoes is rather difficult. This paper proposes to use the Mask R-CNN algorithm for the detection and segmentation of mature green tomatoes. A mobile robot is designed to collect images round-the-clock and with different conditions in the whole greenhouse, thus, to make sure the captured dataset are not only objects with the interest of users. After the training process, RestNet50-FPN is selected as the backbone network. Then, the feature map is trained through the region proposal network to generate the region of interest (ROI), and the ROIAlign bilinear interpolation is used to calculate the target region, such that the corresponding region in the feature map is pooled to a fixed size based on the position coordinates of the preselection box. Finally, the detection and segmentation of mature green tomatoes is realized by the parallel actions of ROI target categories, bounding box regression and mask. When the Intersection over Union is equal to 0.5, the performance of the trained model is the best. The experimental results show that the F1-Score of bounding box and mask region all achieve 92.0%. The image acquisition processes are fully unobservable, without any user preselection, which are a highly heterogenic mix, the selected Mask R-CNN algorithm could also accurately detect mature green tomatoes. The performance of this proposed model in a real greenhouse harvesting environment is also evaluated, thus facilitating the direct application in a tomato harvesting robot. MDPI 2021-11-25 /pmc/articles/PMC8659851/ /pubmed/34883843 http://dx.doi.org/10.3390/s21237842 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Zu, Linlu Zhao, Yanping Liu, Jiuqin Su, Fei Zhang, Yan Liu, Pingzeng Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach |
title | Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach |
title_full | Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach |
title_fullStr | Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach |
title_full_unstemmed | Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach |
title_short | Detection and Segmentation of Mature Green Tomatoes Based on Mask R-CNN with Automatic Image Acquisition Approach |
title_sort | detection and segmentation of mature green tomatoes based on mask r-cnn with automatic image acquisition approach |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659851/ https://www.ncbi.nlm.nih.gov/pubmed/34883843 http://dx.doi.org/10.3390/s21237842 |
work_keys_str_mv | AT zulinlu detectionandsegmentationofmaturegreentomatoesbasedonmaskrcnnwithautomaticimageacquisitionapproach AT zhaoyanping detectionandsegmentationofmaturegreentomatoesbasedonmaskrcnnwithautomaticimageacquisitionapproach AT liujiuqin detectionandsegmentationofmaturegreentomatoesbasedonmaskrcnnwithautomaticimageacquisitionapproach AT sufei detectionandsegmentationofmaturegreentomatoesbasedonmaskrcnnwithautomaticimageacquisitionapproach AT zhangyan detectionandsegmentationofmaturegreentomatoesbasedonmaskrcnnwithautomaticimageacquisitionapproach AT liupingzeng detectionandsegmentationofmaturegreentomatoesbasedonmaskrcnnwithautomaticimageacquisitionapproach |