Cargando…
DCNet: Densely Connected Deep Convolutional Encoder–Decoder Network for Nasopharyngeal Carcinoma Segmentation
Nasopharyngeal Carcinoma segmentation in magnetic resonance imagery (MRI) is vital to radiotherapy. Exact dose delivery hinges on an accurate delineation of the gross tumor volume (GTV). However, the large-scale variation in tumor volume is intractable, and the performance of current models is mostl...
Autores principales: | Li, Yang, Han, Guanghui, Liu, Xiujian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659888/ https://www.ncbi.nlm.nih.gov/pubmed/34883878 http://dx.doi.org/10.3390/s21237877 |
Ejemplares similares
-
Bi-DCNet: Bilateral Network with Dilated Convolutions for Left Ventricle Segmentation
por: Ye, Zi, et al.
Publicado: (2023) -
DCNet: Noise-Robust Convolutional Neural Networks for Degradation Classification on Ancient Documents
por: Arnia, Fitri, et al.
Publicado: (2021) -
Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images
por: Liu, Yi, et al.
Publicado: (2022) -
AttR2U-Net: A Fully Automated Model for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial Attention and Residual Recurrent Convolution
por: Zhang, Jiajing, et al.
Publicado: (2022) -
CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation
por: Chen, Yitong, et al.
Publicado: (2022)