Cargando…
IoT Application of Transfer Learning in Hybrid Artificial Intelligence Systems for Acute Lymphoblastic Leukemia Classification
Acute lymphoblastic leukemia is the most common cancer in children, and its diagnosis mainly includes microscopic blood tests of the bone marrow. Therefore, there is a need for a correct classification of white blood cells. The approach developed in this article is based on an optimized and small Io...
Autores principales: | Pałczyński, Krzysztof, Śmigiel, Sandra, Gackowska, Marta, Ledziński, Damian, Bujnowski, Sławomir, Lutowski, Zbigniew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659925/ https://www.ncbi.nlm.nih.gov/pubmed/34884029 http://dx.doi.org/10.3390/s21238025 |
Ejemplares similares
-
Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset
por: Pałczyński, Krzysztof, et al.
Publicado: (2022) -
Entropy Measurements for Leukocytes’ Surrounding Informativeness Evaluation for Acute Lymphoblastic Leukemia Classification
por: Pałczyński, Krzysztof, et al.
Publicado: (2022) -
ECG Signal Classification Using Deep Learning Techniques Based on the PTB-XL Dataset
por: Śmigiel, Sandra, et al.
Publicado: (2021) -
Deep Learning Techniques in the Classification of ECG Signals Using R-Peak Detection Based on the PTB-XL Dataset
por: Śmigiel, Sandra, et al.
Publicado: (2021) -
Artificial intelligence in IoT
por: Al-Turjman, Fadi
Publicado: (2019)