Cargando…
Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection
Accurate segmentation of fetal heart in echocardiography images is essential for detecting the structural abnormalities such as congenital heart defects (CHDs). Due to the wide variations attributed to different factors, such as maternal obesity, abdominal scars, amniotic fluid volume, and great ves...
Autores principales: | Nurmaini, Siti, Rachmatullah, Muhammad Naufal, Sapitri, Ade Iriani, Darmawahyuni, Annisa, Tutuko, Bambang, Firdaus, Firdaus, Partan, Radiyati Umi, Bernolian, Nuswil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659935/ https://www.ncbi.nlm.nih.gov/pubmed/34884008 http://dx.doi.org/10.3390/s21238007 |
Ejemplares similares
-
Deep Learning for Improving the Effectiveness of Routine Prenatal Screening for Major Congenital Heart Diseases
por: Nurmaini, Siti, et al.
Publicado: (2022) -
Short Single-Lead ECG Signal Delineation-Based Deep Learning: Implementation in Automatic Atrial Fibrillation Identification
por: Tutuko, Bambang, et al.
Publicado: (2022) -
Automatic echocardiographic anomalies interpretation using a stacked residual-dense network model
por: Nurmaini, Siti, et al.
Publicado: (2023) -
Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification
por: Darmawahyuni, Annisa, et al.
Publicado: (2022) -
AFibNet: an implementation of atrial fibrillation detection with convolutional neural network
por: Tutuko, Bambang, et al.
Publicado: (2021)